14 The Minkowski bound and finiteness results

14.1 Lattices in real vector spaces

Recall that for an integral domain \(A \) with fraction field \(K \), an \(A \)-lattice in a finite dimensional \(K \)-vector space \(V \) is a finitely generated \(A \)-submodule of \(V \) that contains a \(K \)-basis for \(V \) (see Definition 5.9). We now want to specialize to the case \(A = \mathbb{Z} \), but rather than working with the fraction field \(K = \mathbb{Q} \) we will instead work with its archimedean completion \(\mathbb{R} \). Note that a finitely generated \(\mathbb{Z} \)-submodule of a vector space is necessarily a free module, since \(\mathbb{Z} \) is a PID and a submodule of a vector space must be torsion-free. Now \(V \) is an \(\mathbb{R} \)-vector space of some finite dimension \(n \), and has a canonical structure as a topological metric space isomorphic to \(\mathbb{R}^n \) (by Proposition 10.5, there is a unique topology on \(V \) compatible with the topology of \(\mathbb{R} \), because \(\mathbb{R} \) is complete). This topology makes \(V \) a locally compact Hausdorff space, thus \(V \) is a locally compact group and is thus equipped with a Haar measure \(\mu \) that is unique up to scaling, by Theorem 13.14.

Definition 14.1. A subgroup \(H \) of a topological group \(G \) is discrete if the subspace topology on \(H \) is the discrete topology (every point is open), and cocompact if \(H \) is a normal subgroup of \(G \) and the quotient \(G/H \) is compact (here \(G/H \) denotes the group \(G/H \) with the quotient topology given by identifying elements of \(G \) that lie in the same coset of \(H \)).

Definition 14.2. Let \(V \) be an \(\mathbb{R} \)-vector space of finite dimension. A (full) lattice in \(V \) is a \(\mathbb{Z} \)-submodule generated by an \(\mathbb{R} \)-basis for \(V \); equivalently, a discrete cocompact subgroup.

See Problem Set 7 for a proof that these two definitions are equivalent.

Remark 14.3. A discrete subgroup of a Hausdorff topological group is always closed; see \([1, \text{III.2.1.5}]\) for a proof. This implies that the quotient of a Hausdorff topological group by a normal discrete subgroup is Hausdorff (which is false for topological spaces in general); see \([1, \text{III.2.1.18}]\). It follows that the quotient of a Hausdorff topological group (including all locally compact groups) by a discrete cocompact subgroup is a compact group. These facts are easy to see in the case of lattices: \(\mathbb{Z} \) is closed in \(\mathbb{R} \) (as the complement of a union of open intervals), so \(\mathbb{Z}^n \) is closed in \(\mathbb{R}^n \). Given a lattice \(\Lambda \) in \(V \), each \(\mathbb{Z} \)-basis for \(\Lambda \) determines an isomorphism of topological groups \(\Lambda \cong \mathbb{Z}^n \) and \(V \cong \mathbb{R}^n \), and the quotient \(V/\Lambda \cong \mathbb{R}^n/\mathbb{Z}^n \cong (\mathbb{R}/\mathbb{Z})^n \) (an \(n \)-torus), is compact Hausdorff and thus a compact group.

Remark 14.4. You might ask why we are using the archimedean completion \(\mathbb{R} = \mathbb{Q}_\infty \) rather than some other completion \(\mathbb{Q}_p \). The reason is that \(\mathbb{Z} \) is not a discrete subgroup of \(\mathbb{Q}_p \) (elements of \(\mathbb{Z} \) can be arbitrarily close to 0 under the \(p \)-adic metric).

Any basis \(v_1, \ldots, v_n \) for \(V \) determines a parallelepiped

\[
F(v_1, \ldots, v_n) := \{ t_1 v_1 + \cdots + t_n v_n : t_1, \ldots, t_n \in [0,1) \}
\]

that we may view as the unit cube by fixing an isomorphism \(\varphi : V \cong \mathbb{R}^n \) that maps \((v_1, \ldots, v_n) \) to the standard basis of unit vectors for \(\mathbb{R}^n \). It then makes sense to normalize the Haar measure \(\mu \) so that \(\mu(F(v_1, \ldots, v_n)) = 1 \), and we then have \(\mu(S) = \mu_{\mathbb{R}^n}(\varphi(S)) \) for every measurable set \(S \subseteq V \), where \(\mu_{\mathbb{R}^n} \) denotes the standard Lebesgue measure on \(\mathbb{R}^n \).

For any other basis \(e_1, \ldots, e_n \) of \(V \), if we let \(E = [e_{ij}]_{ij} \) be the matrix whose \(j \)th column expresses \(e_j = \sum_i e_{ij} v_i \), in terms of our normalized basis \(v_1, \ldots, v_n \), then

\[
\mu(F(e_1, \ldots, e_n)) = | \det E | = \sqrt{\det E^t \det E} = \sqrt{\det(E^t E)} = \sqrt{\det([e_i, e_j]_{ij}),}
\]

Andrew V. Sutherland
where \(\langle e_i, e_j \rangle \) is the canonical inner product (the dot product) on \(\mathbb{R}^n \). Here we have used the fact that the determinant of a matrix in \(\mathbb{R}^{n \times n} \) is the signed volume of the parallelepiped spanned by its columns (or rows). This is a consequence of the following more general result, which is independent of the choice of basis or the normalization of \(\mu \).

Proposition 14.5. Let \(T: V \to V \) be a linear transformation of \(V \simeq \mathbb{R}^n \). For any Haar measure \(\mu \) on \(V \) and every measurable set \(S \subseteq V \) we have

\[
\mu(T(S)) = |\det T| \mu(S).
\]

(2)

Proof. See [8, Ex. 1.2.21].

If \(\Lambda \) is a lattice \(e_1 \mathbb{Z} + \cdots + e_n \mathbb{Z} \) in \(V \), the quotient \(V/\Lambda \) is a compact group that we may identify with the parallelepiped \(F(e_1, \ldots, e_n) \subseteq V \), which forms a set of unique coset representatives. More generally, we make the following definition.

Definition 14.6. Let \(\Lambda \) be a lattice in \(V \simeq \mathbb{R}^n \). A *fundamental domain* for \(\Lambda \) is a measurable set \(F \subseteq V \) such that

\[
V = \bigcup_{\lambda \in \Lambda} (F + \lambda).
\]

In other words, \(F \) is a measurable set of coset representatives for \(V/\Lambda \). Fundamental domains exist: if \(\Lambda = e_1 \mathbb{Z} + \cdots + e_n \mathbb{Z} \) we may take the parallelepiped \(F(e_1, \ldots, e_n) \).

Proposition 14.7. Let \(\Lambda \) be a lattice in \(V \simeq \mathbb{R}^n \) and let \(\mu \) be a Haar measure on \(V \). Every fundamental domain for \(\Lambda \) has the same measure, and this measure is finite and nonzero.

Proof. Let \(F \) and \(G \) be two fundamental domains for \(\Lambda \). Using the translation invariance and countable additivity of \(\mu \) (note that \(\Lambda \simeq \mathbb{Z}^n \) is a countable set) along with the fact that \(\Lambda \) is closed under negation, we obtain

\[
\mu(F) = \mu(F \cap V) = \mu\left(F \cap \bigcup_{\lambda \in \Lambda} (G + \lambda)\right) = \mu\left(\bigcup_{\lambda \in \Lambda} (F \cap (G + \lambda))\right)
\]

\[
= \sum_{\lambda \in \Lambda} \mu(F \cap (G + \lambda)) = \sum_{\lambda \in \Lambda} \mu((F \cap G) + \lambda) = \sum_{\lambda \in \Lambda} \mu(G \cap (F + \lambda)) = \mu(G),
\]

where the last equality follows from the first four (swap \(F \) and \(G \)). If we fix a \(\mathbb{Z} \)-basis \(e_1, \ldots, e_n \) for \(\Lambda \), the parallelepiped \(F(e_1, \ldots, e_n) \) is a fundamental domain for \(\Lambda \), and its closure is compact, so \(\mu(F(e_1, \ldots, e_n)) \) is finite, and it is nonzero because there is an isomorphism \(V \simeq \mathbb{R}^n \) that maps the closure of \(F(e_1, \ldots, e_n) \) to the unit cube in \(\mathbb{R}^n \) whose Lebesgue measure is nonzero (whether a set has zero measure or not does not depend on the normalization of the Haar measure and is therefore preserved by isomorphisms of locally compact groups).

Definition 14.8. Let \(\Lambda \) be a lattice in \(V \simeq \mathbb{R}^n \) and fix a Haar measure \(\mu \) on \(V \). The *covolume* \(\text{covol}(\Lambda) \in \mathbb{R}_{>0} \) of \(\Lambda \) is the measure \(\mu(F) \) of any fundamental domain \(F \) for \(\Lambda \).

Note that covolumes depend on the normalization of \(\mu \), but ratios of covolumes do not.

Proposition 14.9. If \(\Lambda' \subseteq \Lambda \) are lattices in \(V \simeq \mathbb{R}^n \), then \(\text{covol}(\Lambda') = [\Lambda : \Lambda'] \text{covol}(\Lambda) \).
Proof. Fix a fundamental domain F for Λ and a set of coset representatives S for Λ / Λ'. Then

$$F' := \bigsqcup_{\lambda \in S} (F + \lambda)$$

is a fundamental domain for Λ', and $\#S = [\Lambda : \Lambda'] = \mu(F')/\mu(F)$ is finite. We then have

$$\text{covol}(\Lambda') = \mu(F') = (\#S)\mu(F) = [\Lambda : \Lambda'] \text{covol}(\Lambda).$$

Definition 14.10. Let S be a subset of a real vector space. The set S is symmetric if it is closed under negation, and convex if for all $x, y \in S$ we have $\{tx + (1-t)y : t \in [0,1]\} \subseteq S$.

Theorem 14.11 (Minkowski’s Lattice Point Theorem). Let Λ be a lattice in $V \simeq \mathbb{R}^n$ and μ a Haar measure on V. If $S \subseteq V$ is a symmetric convex measurable set that satisfies

$$\mu(S) > 2^n \text{covol}(\Lambda),$$

then S contains a nonzero element of Λ.

Proof. See Problem Set 6.

Note that the inequality in Theorem 14.11 bounds the ratio of the measures of two sets (S and a fundamental domain for Λ), and is thus independent of the choice of μ.

14.2 The canonical inner product

Let K/\mathbb{Q} be a number field of degree n with r real places and s complex places; then $n = r + 2s$, by Corollary 13.9. We now want to consider the base change of K to \mathbb{R} and \mathbb{C}:

$$K_{\mathbb{R}} := K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^r \times \mathbb{C}^s,$$

$$K_{\mathbb{C}} := K \otimes_{\mathbb{Q}} \mathbb{C} \simeq \mathbb{C}^n.$$

The isomorphism $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s$ follows from Theorem 13.5 and the isomorphism $K_{\mathbb{C}} \simeq \mathbb{C}^n$ follows from the fact that \mathbb{C} is separably closed; see Example 4.31. We note that $K_{\mathbb{R}}$ is an \mathbb{R}-vector space of dimension n, thus $K_{\mathbb{R}} \simeq \mathbb{R}^n$, but this is an isomorphism of \mathbb{R}-vector spaces and is not an \mathbb{R}-algebra isomorphism unless $s = 0$.

We have a sequence of injective homomorphisms of topological rings

$$\mathcal{O}_K \hookrightarrow K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}},$$

which are defined as follows:

- the map $\mathcal{O}_K \hookrightarrow K$ is inclusion;
- the map $K \hookrightarrow K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$ is the canonical embedding $\alpha \mapsto \alpha \otimes 1$;
- the map $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s \hookrightarrow \mathbb{C}^r \times \mathbb{C}^{2s} \simeq K_{\mathbb{C}}$ embeds each factor of \mathbb{R}^r in a corresponding factor of \mathbb{C}^r via inclusion and each \mathbb{C} in \mathbb{C}^s is mapped to $\mathbb{C} \times \mathbb{C}$ in \mathbb{C}^{2s} via $z \mapsto (z, \bar{z})$.

To better understand the last map, note that each \mathbb{C} in \mathbb{C}^s arises as $\mathbb{R}[\alpha] = \mathbb{R}[x]/(f) \simeq \mathbb{C}$ for some monic irreducible $f \in \mathbb{R}[x]$ of degree 2, but when we base-change to \mathbb{C} the field $\mathbb{R}[\alpha]$ splits into the étale algebra $\mathbb{C}[x]/(x - \alpha) \times \mathbb{C}[x]/(x - \bar{\alpha}) \simeq \mathbb{C} \times \mathbb{C}$. The composition $K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ is given by the map

$$x \mapsto (\sigma_1(x), \ldots, \sigma_n(x)),$$
where \(\text{Hom}_\mathbb{Q}(K, \mathbb{C}) = \{\sigma_1, \ldots, \sigma_n\} \). If we put \(K = \mathbb{Q}(\alpha) := K[x]/(f) \) and let \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \) be the roots of \(f \) in \(\mathbb{C} \), each \(\sigma_i \) is the \(\mathbb{Q} \)-algebra homomorphism \(K \to \mathbb{C} \) defined by \(\alpha \mapsto \alpha_i \).

If we fix a \(\mathbb{Z} \)-basis for \(\mathcal{O}_K \), its image under the maps in (3) is a \(\mathbb{Q} \)-basis for \(K \), a \(\mathbb{R} \)-basis for \(K_\mathbb{R} \), and a \(\mathbb{C} \)-basis for \(K_\mathbb{C} \), all of which are vector spaces of dimension \(n = [K : \mathbb{Q}] \). We may thus view the injections in (3) as inclusions of topological groups (but not rings!)

\[
\mathbb{Z}^n \hookrightarrow \mathbb{Q}^n \hookrightarrow \mathbb{R}^n \hookrightarrow \mathbb{C}^n.
\]

The ring of integers \(\mathcal{O}_K \) is a lattice in the real vector space \(K_\mathbb{R} \simeq \mathbb{R}^n \), which inherits an inner product from the canonical Hermitian inner product on \(K_\mathbb{C} \simeq \mathbb{C}^n \) defined by

\[
\langle z, z' \rangle := \sum_{i=1}^{n} z_i \bar{z}_i' \in \mathbb{C}.
\]

For elements \(x, y \in K \hookrightarrow K_\mathbb{R} \hookrightarrow K_\mathbb{C} \) the Hermitian inner product can be computed as

\[
\langle x, y \rangle := \sum_{\sigma \in \text{Hom}_\mathbb{Q}(K, \mathbb{C})} \sigma(x) \overline{\sigma(y)} \in \mathbb{R},
\]

which is a real number because the non-real embeddings in \(\text{Hom}_\mathbb{Q}(K, \mathbb{C}) \) come in complex conjugate pairs. The inner product defined in (4) agrees with the restriction of the Hermitian inner product on \(K_\mathbb{R} \hookrightarrow K_\mathbb{C} \). The metric space topology it induces on \(K_\mathbb{R} \) is the same as the Euclidean topology on \(K_\mathbb{R} \simeq \mathbb{R}^n \) induced by the usual dot product on \(\mathbb{R}^n \), but the corresponding norm \(\|x\| := \langle x, x \rangle \) has a different normalization, as we now explain.

If we write elements \(z \in K_\mathbb{C} \simeq \mathbb{C}^n \) as vectors \((z_\sigma) \) indexed by the set \(\sigma \in \text{Hom}_\mathbb{Q}(K, \mathbb{C}) \) in some fixed order, we may identify \(K_\mathbb{R} \) with its image in \(K_\mathbb{C} \) as the set

\[
K_\mathbb{R} = \{z \in K_\mathbb{C} : \bar{z}_\sigma = z_\bar{\sigma} \text{ for all } \sigma \in \text{Hom}_\mathbb{Q}(K, \mathbb{C})\}.
\]

For real embeddings \(\sigma = \bar{\sigma} \) we have \(z_\sigma \in \mathbb{R} \subseteq \mathbb{C} \), and for pairs of conjugate complex embeddings \((\sigma, \bar{\sigma}) \) we get the embedding \(z \mapsto (z_\sigma, z_{\bar{\sigma}}) \) of \(\mathbb{C} \) into \(\mathbb{C} \times \mathbb{C} \) used to defined the map \(K_\mathbb{R} \hookrightarrow K_\mathbb{C} \) above. Each \(z \in K_\mathbb{R} \) can be uniquely written in the form

\[
(w_1, \ldots, w_r, x_1 + iy_1, x_1 - iy_1, \ldots, x_s + iy_s, x_s - iy_s),
\]

with \(w_i, x_j, y_j \in \mathbb{R} \). Each \(w_i \) corresponds to a \(z_\sigma \) with \(\sigma = \bar{\sigma} \), and each \((x_j + iy_j, x_j - iy_j) \) corresponds to a complex conjugate pair \((z_\sigma, z_{\bar{\sigma}}) \) with \(\sigma \neq \bar{\sigma} \). The canonical inner product on \(K_\mathbb{R} \) can then be written as

\[
\langle z, z' \rangle = \sum_{i=1}^{r} w_i w_i' + 2 \sum_{j=1}^{s} (x_j x_j' + y_j y_j').
\]

Thus if we take \(w_1, \ldots, w_r, x_1, y_1, \ldots, x_s, y_s \) as coordinates for \(K_\mathbb{R} \simeq \mathbb{R}^n \) (as \(\mathbb{R} \)-vector spaces), in order to normalize the Haar measure \(\mu \) on \(K_\mathbb{R} \) so that it is consistent with the Lebesgue measure \(\mu_\mathbb{R}^n \) on \(\mathbb{R}^n \) we define

\[
\mu(S) := 2^s \mu_\mathbb{R}^n(S)
\]

for any measurable set \(S \subseteq K_\mathbb{R} \) that we may view as a subset of \(\mathbb{R}^n \) by expressing it in \(w_i, x_j, y_j \) coordinates as above. With this normalization, the identity (1) still holds when
we replace $\mu_{\mathbb{R}^n}$ with μ and the dot product on \mathbb{R}^n with the Hermitian inner product on $K_{\mathbb{R}}$, that is, for any \mathbb{R}-basis e_1, \ldots, e_n of $K_{\mathbb{R}}$ we still have

$$\mu(F(e_1, \ldots, e_n)) = \sqrt{|\det([e_i, e_j]_{ij})|}$$

(7)

Using the Hermitian inner product on $K_{\mathbb{R}} \subseteq K_{\mathbb{C}}$ rather than the dot product on $K_{\mathbb{R}} \simeq \mathbb{R}^n$ multiplies $2s$ of the columns in the matrix $[e_i, e_j]_{ij}$ by 2, and thus multiplies the RHS by $\sqrt{2^{2s}} = 2^s$; our normalization of $\mu = 2^s \mu_{\mathbb{R}^n}$ multiplies the LHS by 2^s so that (7) still holds.

14.3 Covolumes of fractional ideals

Having fixed a normalized Haar measure μ for $K_{\mathbb{R}}$, we can now compute covolumes of lattices in $K_{\mathbb{R}} \simeq \mathbb{R}^n$. This includes not only (the image of) the ring of integers \mathcal{O}_K, but also any nonzero fractional ideal I of \mathcal{O}_K: every such I contains a nonzero principal fraction ideal $a\mathcal{O}_K$, and if e_1, \ldots, e_n is a \mathbb{Z}-basis for \mathcal{O}_K then ae_1, \ldots, ae_n is a \mathbb{Z}-basis for $a\mathcal{O}_K$ that is an \mathbb{R}-basis for $K_{\mathbb{R}}$ that lies in I.

Recall from Remark 12.14 that the discriminant of a number field K is the integer

$$D_K := \text{disc } \mathcal{O}_K := \text{disc}(e_1, \ldots, e_n) \in \mathbb{Z}.$$

Proposition 14.12

Let K be a number field. Using the normalized Haar measure on $K_{\mathbb{R}}$ defined in (6),

$$\text{covol}(\mathcal{O}_K) = \sqrt{|D_K|}.$$

Proof. Let $e_1, \ldots, e_n \in \mathcal{O}_K$ be a \mathbb{Z}-basis for \mathcal{O}_K, let $\text{Hom}_\mathbb{Q}(K, \mathbb{C}) = \{\sigma_1, \ldots, \sigma_n\}$, and define $A := [\sigma_i(e_j)]_{ij} \in \mathbb{C}^{n \times n}$. Then $D_K = \text{disc}(e_1, \ldots, e_n) = (\det A)^2$, by Proposition 12.6.

Viewing $\mathcal{O}_K \hookrightarrow K_{\mathbb{R}}$ as a lattice in $K_{\mathbb{R}}$ with basis e_1, \ldots, e_n, we may use (7) to compute $\text{covol}(\mathcal{O}_K) = \mu(F(e_1, \ldots, e_n)) = \sqrt{|\det([e_i, e_j]_{ij})|}$. Applying (4) yields

$$\det([e_i, e_j]_{ij}) = \det \left[\sum_k \sigma_k(e_i) \sigma_k(e_j) \right] = \det(A^tA) = (\det A)(\det A).$$

Noting that $\det A$ is the square root of an integer (hence either real or purely imaginary), we have $\text{covol}(\mathcal{O}_K)^2 = |(\det A)^2| = |D_K|$, and the proposition follows. \hfill \Box

Recall from Remark 6.13 that for number fields K we view the absolute norm

$$N : \mathcal{O}_K \to \mathbb{Z}$$

$$I \mapsto [\mathcal{O}_K : I]_\mathbb{Z}$$

as having image in $\mathbb{Q}_{>0}$ by identifying $N(I) \in \mathbb{Z}$ with a positive generator for $N(I)$ (note that \mathbb{Z} is a PID). Recall that $[\mathcal{O}_K : I]_\mathbb{Z}$ is a module index of \mathbb{Z}-lattices in the \mathbb{Q}-vector space K, see Definitions 6.1 and 6.5), and for ideals $I \subseteq \mathcal{O}_K$ this is just the positive integer $[\mathcal{O}_K : I]_\mathbb{Z} = [\mathcal{O}_K : I]$. When $I = (a)$ is a principal fractional ideal with $a \in K$, we may simply write $N(a) := N((a)) = [N_{K/\mathbb{Q}}(a)]$

Corollary 14.13

Let K be a number field and let I be a nonzero fractional ideal of \mathcal{O}_K. Then

$$\text{covol}(I) = N(I) \sqrt{|D_K|}.$$
Proof. Let $n = [K : \mathbb{Q}]$. Since $\text{covol}(bI) = b^n \text{covol}(I)$ and $N(bI) = b^n N(I)$ for any $b \in \mathbb{Z}_{>0}$, without loss of generality we may assume $I \subseteq \mathcal{O}_K$ (replace I with a suitable bI if not). Applying Propositions 14.9 and 14.12, we have

$$\text{covol}(I) = [\mathcal{O}_K : I] \text{covol}(\mathcal{O}_K) = N(I) \text{covol}(\mathcal{O}_K) = N(I) \sqrt{|D_K|}$$

as claimed. \qed

14.4 The Minkowski bound

Theorem 14.14. Minkowski bound Let K be a number field of degree n with s complex places. Define the Minkowski constant m_K for K as the positive real number

$$m_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|D_K|}.$$

For every nonzero fractional ideal I of \mathcal{O}_K there is a nonzero $a \in I$ for which

$$N(a) \leq m_K N(I).$$

To prove this theorem we need the following lemma.

Lemma 14.15. Let K be a number field of degree n with r real and s complex places. For each $t \in \mathbb{R}_{>0}$, the measure of the convex symmetric set

$$S_t := \{(z_{\sigma}) \in K_\mathbb{R} : \sum |z_{\sigma}| \leq t\} \subseteq K_\mathbb{R}$$

with respect to the normalized Haar measure μ on $K_\mathbb{R}$ is

$$\mu(S_t) = 2^r \pi^s t^n/n!.$$

Proof. As in (5), we may uniquely write each $z = (z_{\sigma}) \in K_\mathbb{R}$ in the form

$$(w_1, \ldots, w_r, x_1 + iy_1, x_1 - iy_1, \ldots, x_s + iy_s, x_s - iy_s)$$

with $w_i, x_j, y_j \in \mathbb{R}$. We will have $\sum_{\sigma} |z_{\sigma}| \leq t$ if and only if

$$\sum_{i=1}^r |w_i| + \sum_{j=1}^s 2\sqrt{|x_j|^2 + |y_j|^2} \leq t. \quad (8)$$

We now compute the volume of this region in \mathbb{R}^n by relating it to the volume of the simplex

$$U_t := \{(u_1, \ldots, u_n) \in \mathbb{R}_{>0}^n : u_1 + \cdots + u_n \leq t\} \subseteq \mathbb{R}^n,$$

which is $\mu_{\mathbb{R}^n}(U_t) = t^n/n!$ (volume of the standard simplex in \mathbb{R}^n scaled by a factor of t).

If we view all the w_i, x_j, y_j as fixed except the last pair (x_s, y_s), then (x_s, y_s) ranges over a disk of some radius $d \in [0, t/2]$ determined by (8). If we replace (x_s, y_s) with (u_{n-1}, u_n) ranging over the triangular region bounded by $u_{n-1} + u_n \leq 2d$ and $u_{n-1}, u_n \geq 0$, we need to incorporate a factor of $\pi/2$ to account for the difference between $(2d)^2/2 = 2d^2$ and πd^2; repeat this s times. Similarly, if we hold everything but w_r fixed and replace w_r ranging over $[-d, d]$ for some $d \in [0, t]$ with u_r ranging over $[0, d]$, we need to incorporate a factor of 2 to account for this change of variable; repeat r times. We then have

$$\mu(S_t) = 2^s \mu_{\mathbb{R}^n}(S_t) = 2^s \left(\frac{\pi}{2}\right)^s 2^r \mu_{\mathbb{R}^n}(U) = 2^r \pi^s t^n/n!.$$
Proof of Theorem 14.14. Let I be a nonzero fractional ideal of \mathcal{O}_K. By Theorem 14.11, if we choose t so that $\mu(S_t) > 2^n \cvol(I)$, then S_t will contain a nonzero $a \in I$. By Lemma 14.15 and Corollary 14.13, it suffices to choose t so that

$$\left(\frac{t}{n}\right)^n = \frac{n!\mu(S_t)}{n^n 2^n \pi^s} > \frac{n!2^n}{n^n 2^n \pi^s} \cvol(I) = \frac{n!}{n^n} \left(\frac{4}{n}\right)^s \sqrt{|D_K|N(I)} = m_K N(I).$$

Let us now pick t so that $\left(\frac{t}{n}\right)^n > m_K N(I)$. Then S_t contains $a \in I$ with $\sum_\sigma |\sigma(a)| \leq t$ Recalling that the geometric mean is bounded above by the arithmetic mean, we then have

$$N(a) = \left(N(a)^{1/n}\right)^n = \left(\prod_\sigma |\sigma(a)|^{1/n}\right)^n \leq \left(\frac{1}{n} \sum_\sigma |\sigma(a)|\right)^n \leq \left(\frac{t}{n}\right)^n,$$

Taking the limit as $\left(\frac{t}{n}\right)^n \rightarrow m_K N(I)$ from above yields $N(a) \leq m_K N(I)$. \hfill \Box

14.5 Finiteness of the ideal class group

Recall that the ideal class group $\text{cl}\mathcal{O}_K$ is the quotient of the ideal group \mathcal{I}_K of \mathcal{O}_K by its subgroup of principal fractional ideals. We now use the Minkowski bound to prove that every ideal class $[I] \in \text{cl}\mathcal{O}_K$ can be represented by an ideal $I \subseteq \mathcal{O}_K$ of small norm. It will then follow that the ideal class group is finite.

Theorem 14.16. Let K be a number field. Every ideal class in $\text{cl}\mathcal{O}_K$ contains an ideal $I \subseteq \mathcal{O}_K$ of absolute norm $N(I) \leq m_K$, where m_K is the Minkowski constant for K.

Proof. Let $[J]$ be an ideal class of \mathcal{O}_K represented by the nonzero fractional ideal J. By Theorem 14.14, the fractional ideal J^{-1} contains a nonzero element a for which

$$N(a) \leq m_K N(J^{-1}) = m_K N(J)^{-1},$$

and therefore $N(aJ) = N(a)N(J) \leq m_K$. We have $a \in J^{-1}$, thus $aJ \subseteq J^{-1}J = \mathcal{O}_K$, so $I = aJ$ is an \mathcal{O}_K-ideal in the ideal class $[J]$ with $N(I) \leq m_K$ as desired. \hfill \Box

Lemma 14.17. Let K be a number field and let M be a real number. The set of ideals $I \subseteq \mathcal{O}_K$ with $N(I) \leq M$ is finite.

Proof 1. As a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^n$, the additive group $\mathcal{O}_K \simeq \mathbb{Z}^n$ has only finitely many subgroups I of index m for each positive integer $m \leq M$, since $[\mathbb{Z}^n : I] = m$ implies

$$(m\mathbb{Z})^n \subseteq I \subseteq \mathbb{Z}^n,$$

and $(m\mathbb{Z})^n$ has finite index $m^n = [\mathbb{Z}^n : m\mathbb{Z}] = [\mathbb{Z} : m\mathbb{Z}]^n$ in \mathbb{Z}^n. \hfill \Box

The proof of Lemma 14.17 is effective: the number of ideals $I \subseteq \mathcal{O}_K$ with $N(I) \leq M$ clearly cannot exceed M^{n+1}. But in fact we can give a much better bound than this.

Proof 2. Let I be an ideal of absolute norm $N(I) \leq M$ and let $I = p_1 \cdots p_k$ be its factorization into (not necessarily distinct) prime ideals. Then $M \geq N(I) = N(p_1) \cdots N(p_k) \geq 2^k$, since the norm of each p_i is a prime power, and in particular, at least 2. It follows that $k \leq \log_2 M$ is bounded, independent of I. Each prime ideal p lies above some prime $p \leq M$, of which there are fewer than M, and for each prime p the number of primes $p|p$ is at most n. Thus there are fewer than $(nM)^{\log_2 M}$ ideals of norm at most M in \mathcal{O}_K. \hfill \Box
Corollary 14.18. Let \(K \) be a number field. The ideal class group of \(\mathcal{O}_K \) is finite.

Proof. By Theorem 14.16, each ideal class is represented by an ideal of norm at most \(m_K \), and by Lemma 14.17, the number of such ideals is finite. \(\square \)

Remark 14.19. For imaginary quadratic fields \(K = \mathbb{Q}(\sqrt{-d}) \) it is known that the class number \(h_K := \# \text{cl} \mathcal{O}_K \) tends to infinity as \(d \to \infty \) ranges over square-free integers. This was conjectured by Gauss in his *Disquisitiones Arithmeticae* [3] and proved by Heilbronn [5] in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [6]. This implies that there are only a finite number of imaginary quadratic fields with any particular class number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields with class number one, but this was not proved until the 20th century by Stark [7] and Heegner [4]. Complete lists of imaginary quadratic fields for each class number \(h_K \leq 100 \) are now available [9]. By contrast, Gauss predicted that infinitely many real quadratic fields should have class number 1, however this question remains completely open. \(^2\)

Corollary 14.20. Let \(K \) be a number field of degree \(n \) with \(s \) complex places. Then

\[
|D_K| \geq \left(\frac{n^n}{n!} \right)^2 \left(\frac{\pi}{4} \right)^{2s} > \frac{1}{e^{2n}} \left(\frac{\pi e^2}{4} \right)^n.
\]

Proof. If \(I \) is an ideal and \(a \in I \) is nonzero, then \(N(a) \geq N(I) \), so Theorem 14.16 implies

\[
m_K = \frac{n!}{n^n} \left(\frac{4}{\pi} \right)^s \sqrt{|D_K|} \geq 1,
\]

the first inequality follows. The second uses an explicit form of Stirling’s approximation,

\[
n! \leq e\sqrt{n} \left(\frac{n}{e} \right)^n,
\]

and the fact that \(2s \leq n \). \(\square \)

We note that \(\pi e^2/4 \approx 5.8 > 1 \), so the minimum value of \(|D_K| \) increases exponentially with \(n = [K : \mathbb{Q}] \). The lower bounds for \(n \in [2, 7] \) given by the corollary are listed below, along with the least value of \(|D_K| \) that actually occurs. As can be seen in the table, \(|D_K| \) appears to grow much faster than the corollary suggests. Better lower bounds can be proved using more advanced techniques, but a significant gap still remains.

<table>
<thead>
<tr>
<th>(n)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower bound from Corollary 14.20</td>
<td>3</td>
<td>13</td>
<td>44</td>
<td>259</td>
<td>986</td>
<td>6267</td>
</tr>
<tr>
<td>minimum value of (</td>
<td>D_K</td>
<td>)</td>
<td>3</td>
<td>23</td>
<td>275</td>
<td>4511</td>
</tr>
</tbody>
</table>

Corollary 14.21. If \(K \) is a number field other than \(\mathbb{Q} \) then \(|D_K| > 1 \); equivalently, there are no nontrivial unramified extensions of \(\mathbb{Q} \).

Theorem 14.22. For every real \(M \) the set of number fields \(K \) with \(|D_K| < M \) is finite.

\(^1\)Heegner’s 1952 result [4] was essentially correct but contained some gaps that prevented it from being generally accepted until 1967 when Stark gave a complete proof in [7].

\(^2\)In fact it is conjectured that \(h_K = 1 \) for approximately 75.446\% of real quadratic fields with prime discriminant; this follows from the Cohen-Lenstra heuristics [2].
Proof. It follows from Corollary 14.20 that it suffices to prove this for fixed \(n := [K : \mathbb{Q}]\), since for all sufficiently large \(n\) we will have \(|D_K| > M\) for all number fields \(K\) of degree \(n\).

Case 1: Let \(K\) be a totally real field (so every place \(v\) is real) with \(|D_K| < M\). Then \(r = n\) and \(s = 0\), so \(K_R \cong \mathbb{R}^r \times \mathbb{C}^s = \mathbb{R}^n\). Consider the convex symmetric set
\[
S := \{(x_1, \ldots, x_n) \in K_R \cong \mathbb{R}^n : |x_1| \leq \sqrt{M} \text{ and } |x_i| < 1 \text{ for } i > 1\}
\]
with measure
\[
\mu(S) = 2\sqrt{M}2^{n-1} = 2^n \sqrt{M} > 2^n \sqrt{|D_K|} = 2^n \text{ covol}(\mathcal{O}_K).
\]
By Theorem 14.11, the set \(S\) contains a nonzero \(a \in \mathcal{O}_K \subseteq K \hookrightarrow K_R\) that we may write as \(a = (a_1, \ldots, a_n) = (\sigma_1(a), \ldots, \sigma_n(a))\), where the \(\sigma_i\) are the \(n\) embeddings of \(K\) into \(\mathbb{C}\), all of which are real embeddings. We have
\[
N(a) = \left| \prod \sigma_i(a) \right| \geq 1,
\]
since \(N(a)\) must be a positive integer, and \(|a_2|, \ldots, |a_n| < 1\), so \(|a_1| > 1 > |a_i| \text{ for all } i \neq 1\).

We claim that \(K = \mathbb{Q}(a)\). If not, each \(a_i = \sigma_i(a)\) would be repeated \([K : \mathbb{Q}(a)] > 1\) times in the vector \((a_1, \ldots, a_n)\), since there must be \([K : \mathbb{Q}(a)]\) elements of \(\text{Hom}_{\mathbb{Q}}(K, \mathbb{C})\) that fix \(\mathbb{Q}(a)\), namely, those lying in the kernel of the map \(\text{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \to \text{Hom}_{\mathbb{Q}}(\mathbb{Q}(a), \mathbb{C})\) induced by restriction. But this is impossible since \(a_i \neq a_1\) for \(i \neq 1\).

The minimal polynomial \(f \in \mathbb{Z}[x]\) of \(a\) is a monic irreducible polynomial of degree \(n\). The roots of \(f(x)\) in \(\mathbb{C}\) are precisely the \(a_i = \sigma_i(a) \in \mathbb{R}\), all of which are bounded by \(|a_i| \leq \sqrt{M}\). Each coefficient \(f_i\) of \(f(x)\) is an elementary symmetric functions of its roots, hence also bounded in absolute value (certainly \(|f_i| \leq 2^n M^{n/2}\) for all \(i\)). The \(f_i\) are integers, so there are only finitely many possibilities for \(f(x)\), hence only finitely many totally real number fields \(K\) of degree \(n\).

Case 2: \(K\) has \(r\) real and \(s > 0\) complex places, and \(K_R \cong \mathbb{R}^r \times \mathbb{C}^s\). Now let
\[
S := \{(w_1, \ldots, w_r, z_1, \ldots, z_s) \in K_R : |z_1|^2 < c\sqrt{M} \text{ and } |w_i|, |z_j| < 1 \text{ for } j > 1\}
\]
with \(c\) chosen so that \(\mu(S) > 2^n \text{ covol}(\mathcal{O}_K)\) (the exact value of \(c\) depends on \(s\) and \(n\)). The argument now proceeds as in case 1: we get a nonzero \(a \in \mathcal{O}_K \cap S\) for which \(K = \mathbb{Q}(a)\), and only a finite number of possible minimal polynomials \(f \in \mathbb{Z}[x]\) for \(a\).

Lemma 14.23. Let \(K\) be a number field of degree \(n\). For each prime number \(p\) we have
\[
v_p(D_K) \leq n[\log_p n] + n - 1.
\]
In particular, \(v_p(D_K) \leq n[\log_2 n] + n - 1\) for all \(p\).

Proof. We have
\[
v_p(D_K) = v_p(\mathcal{N}_{K/Q}(D_{K/Q})) = \sum_{q|p} f_q v_q(D_{K/Q})
\]
where \(\mathcal{D}_{K/Q}\) is the different ideal and \(f_q\) is the residue degree of \(q|p\). Using Theorem 12.26 to bound \(v_q(D_{K/Q})\) yields
\[
v_p(D_K) \leq \sum_{q|p} f_q(e_q - 1 + v_q(e_q)) = n - \sum_{q|p} f_q + \sum_{q|p} f_q e_q v_p(e_q) \leq n - 1 + n[\log_p n],
\]
where we have used \(-1\) as an upper bound on \(-\sum_{q|p} f_q\) and \([\log_p n]\) as an upper bound on each \(v_p(e_q)\) (since \(e_q \leq n\)), and the fact that \(\sum_{q|p} e_q f_q = n\) (by Theorem 5.34). \(\square\)
Remark 14.24. The bound in Lemma 14.23 is tight; it is achieved by $K = \mathbb{Q}[x]/(x^{p^e} - p)$, for example.

Theorem 14.25 (Hermite). Let S be a finite set of places of \mathbb{Q}, and let n be an integer. The number of extensions K/\mathbb{Q} of degree n unramified outside of S is finite.

Proof. By Lemma 14.23, since n is fixed, the valuation $v_p(D_K)$ is bounded for each $p \in S$ and must be zero for $p \notin S$. Thus $|D_K|$ is bounded, and the theorem then follows from Proposition 14.22.

References

