14 The Minkowski bound and finiteness results

14.1 Lattices in real vector spaces

Recall that for an integral domain A with fraction field K, an A-lattice in a finite dimensional K-vector space V is a finitely generated A-submodule of V that contains a K-basis for V (see Definition 5.9). We now want to specialize to the case $A = \mathbb{Z}$, but rather than working with the fraction field $K = \mathbb{Q}$ we will instead work with its archimedean completion \mathbb{R} . Note that a finitely generated \mathbb{Z} -submodule of a vector space is necessarily a free module, since \mathbb{Z} is a PID and a submodule of a vector space must be torsion-free. Now V is an \mathbb{R} -vector space of some finite dimension n, and has a canonical structure as a topological metric space isomorphic to \mathbb{R}^n (by Proposition 10.5, there is a unique topology on V compatible with the topology of \mathbb{R} , because \mathbb{R} is complete). This topology makes V a locally compact Hausdorff space, thus V is a locally compact group and is thus equipped with a Haar measure μ that is unique up to scaling, by Theorem 13.14.

Definition 14.1. A subgroup H of a topological group G is *discrete* if the subspace topology on H is the discrete topology (every point is open), and *cocompact* if H is a normal subgroup of G and the quotient G/H is compact (here G/H denotes the group G/H with the quotient topology given by identifying elements of G that lie in the same coset of H).

Definition 14.2. Let V be an \mathbb{R} -vector space of finite dimension. A (full) *lattice* in V is a \mathbb{Z} -submodule generated by an \mathbb{R} -basis for V; equivalently, a discrete cocompact subgroup.

See Problem Set 7 for a proof that these two definitions are equivalent.

Remark 14.3. A discrete subgroup of a Hausdorff topological group is always closed; see [1, III.2.1.5] for a proof. This implies that the quotient of a Hausdorff topological group by a normal discrete subgroup is Hausdorff (which is false for topological spaces in general); see [1, III.2.1.18]. It follows that the quotient of a Hausdorff topological group (including all locally compact groups) by a discrete cocompact subgroup is a compact group. These facts are easy to see in the case of lattices: \mathbb{Z} is closed in \mathbb{R} (as the complement of a union of open intervals), so \mathbb{Z}^n is closed in \mathbb{R}^n . Given a lattice Λ in V, each \mathbb{Z} -basis for Λ determines an isomorphism of topological groups $\Lambda \simeq \mathbb{Z}^n$ and $V \simeq \mathbb{R}^n$, and the quotient $V/\Lambda \simeq \mathbb{R}^n/\mathbb{Z}^n \simeq (\mathbb{R}/\mathbb{Z})^n$ (an *n*-torus), is compact Hausdorff and thus a compact group.

Remark 14.4. You might ask why we are using the archimedean completion $\mathbb{R} = \mathbb{Q}_{\infty}$ rather than some other completion \mathbb{Q}_p . The reason is that \mathbb{Z} is not a discrete subgroup of \mathbb{Q}_p (elements of \mathbb{Z} can be arbitrarily close to 0 under the *p*-adic metric).

Any basis v_1, \ldots, v_n for V determines a parallelepiped

 $F(v_1, \dots, v_n) := \{t_1 v_1 + \dots + t_n v_n : t_1, \dots, t_n \in [0, 1)\}$

that we may view as the unit cube by fixing an isomorphism $\varphi \colon V \xrightarrow{\sim} \mathbb{R}^n$ that maps (v_1, \ldots, v_n) to the standard basis of unit vectors for \mathbb{R}^n . It then makes sense to normalize the Haar measure μ so that $\mu(F(v_1, \ldots, v_n)) = 1$, and we then have $\mu(S) = \mu_{\mathbb{R}^n}(\varphi(S))$ for every measurable set $S \subseteq V$, where $\mu_{\mathbb{R}^n}$ denotes the standard Lebesgue measure on \mathbb{R}^n .

For any other basis e_1, \ldots, e_n of V, if we let $E = [e_{ij}]_{ij}$ be the matrix whose *j*th column expresses $e_j = \sum_i e_{ij} v_i$, in terms of our normalized basis v_1, \ldots, v_n , then

$$\mu(F(e_1,\ldots,e_n)) = |\det E| = \sqrt{\det E^t \det E} = \sqrt{\det(E^t E)} = \sqrt{\det[\langle e_i, e_j \rangle]_{ij}}, \quad (1)$$

where $\langle e_i, e_j \rangle$ is the canonical inner product (the dot product) on \mathbb{R}^n . Here we have used the fact that the determinant of a matrix in $\mathbb{R}^{n \times n}$ is the signed volume of the parallelepiped spanned by its columns (or rows). This is a consequence of the following more general result, which is independent of the choice of basis or the normalization of μ .

Proposition 14.5. Let $T: V \to V$ be a linear transformation of $V \simeq \mathbb{R}^n$. For any Haar measure μ on V and every measurable set $S \subseteq V$ we have

$$\mu(T(S)) = |\det T|\,\mu(S). \tag{2}$$

Proof. See [8, Ex. 1.2.21].

If Λ is a lattice $e_1\mathbb{Z} + \cdots + e_n\mathbb{Z}$ in V, the quotient V/Λ is a compact group that we may identify with the parallelepiped $F(e_1, \ldots, e_n) \subseteq V$, which forms a set of unique coset representatives. More generally, we make the following definition.

Definition 14.6. Let Λ be a lattice in $V \simeq \mathbb{R}^n$. A fundamental domain for Λ is a measurable set $F \subseteq V$ such that

$$V = \bigsqcup_{\lambda \in \Lambda} (F + \lambda).$$

In other words, F is a measurable set of coset representatives for V/Λ . Fundamental domains exist: if $\Lambda = e_1\mathbb{Z} + \cdots + e_n\mathbb{Z}$ we may take the parallelepiped $F(e_1, \ldots, e_n)$.

Proposition 14.7. Let Λ be a lattice in $V \simeq \mathbb{R}^n$ and let μ be a Haar measure on V. Every fundamental domain for Λ has the same measure, and this measure is finite and nonzero.

Proof. Let F and G be two fundamental domains for Λ . Using the translation invariance and countable additivity of μ (note that $\Lambda \simeq \mathbb{Z}^n$ is a countable set) along with the fact that Λ is closed under negation, we obtain

$$\mu(F) = \mu(F \cap V) = \mu\left(F \cap \bigsqcup_{\lambda \in \Lambda} (G + \lambda)\right) = \mu\left(\bigsqcup_{\lambda \in \Lambda} (F \cap (G + \lambda))\right)$$
$$= \sum_{\lambda \in \Lambda} \mu(F \cap (G + \lambda)) = \sum_{\lambda \in \Lambda} \mu((F - \lambda) \cap G) = \sum_{\lambda \in \Lambda} \mu(G \cap (F + \lambda)) = \mu(G),$$

where the last equality follows from the first four (swap F and G). If we fix a \mathbb{Z} -basis e_1, \ldots, e_n for Λ , the parallelepiped $F(e_1, \ldots, e_n)$ is a fundamental domain for Λ , and its closure is compact, so $\mu(F(e_1, \ldots, e_n))$ is finite, and it is nonzero because there is an isomorphism $V \simeq \mathbb{R}^n$ that maps the closure of $F(e_1, \ldots, e_n)$ to the unit cube in \mathbb{R}^n whose Lebesgue measure is nonzero (whether a set has zero measure or not does not depend on the normalization of the Haar measure and is therefore preserved by isomorphisms of locally compact groups).

Definition 14.8. Let Λ be a lattice in $V \simeq \mathbb{R}^n$ and fix a Haar measure μ on V. The *covolume* covol(Λ) $\in \mathbb{R}_{>0}$ of Λ is the measure $\mu(F)$ of any fundamental domain F for Λ .

Note that covolumes depend on the normalization of μ , but ratios of covolumes do not.

Proposition 14.9. If $\Lambda' \subseteq \Lambda$ are lattices in $V \simeq \mathbb{R}^n$, then $\operatorname{covol}(\Lambda') = [\Lambda : \Lambda'] \operatorname{covol}(\Lambda)$.

Proof. Fix a fundamental domain F for Λ and a set of coset representatives S for Λ/Λ' . Then

$$F' := \bigsqcup_{\lambda \in S} (F + \lambda)$$

is a fundamental domain for Λ' , and $\#S = [\Lambda : \Lambda'] = \mu(F')/\mu(F)$ is finite. We then have

$$\operatorname{covol}(\Lambda') = \mu(F') = (\#S)\mu(F) = [\Lambda : \Lambda'] \operatorname{covol}(\Lambda).$$

Definition 14.10. Let S be a subset of a real vector space. The set S is symmetric if it is closed under negation, and convex if for all $x, y \in S$ we have $\{tx + (1-t)y : t \in [0,1]\} \subseteq S$.

Theorem 14.11 (MINKOWSKI'S LATTICE POINT THEOREM). Let Λ be a lattice in $V \simeq \mathbb{R}^n$ and μ a Haar measure on V. If $S \subseteq V$ is a symmetric convex measurable set that satisfies

$$\mu(S) > 2^n \operatorname{covol}(\Lambda),$$

then S contains a nonzero element of Λ .

Proof. See Problem Set 6.

Note that the inequality in Theorem 14.11 bounds the ratio of the measures of two sets (S and a fundamental domain for Λ), and is thus independent of the choice of μ .

14.2 The canonical inner product

Let K/\mathbb{Q} be a number field of degree n with r real places and s complex places; then n = r + 2s, by Corollary 13.9. We now want to consider the base change of K to \mathbb{R} and \mathbb{C} :

$$K_{\mathbb{R}} := K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^r \times \mathbb{C}^s,$$

$$K_{\mathbb{C}} := K \otimes_{\mathbb{O}} \mathbb{C} \simeq \mathbb{C}^n.$$

The isomorphism $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s$ follows from Theorem 13.5 and the isomorphism $K_{\mathbb{C}} \simeq \mathbb{C}^n$ follows from the fact that \mathbb{C} is separably closed; see Example 4.31. We note that $K_{\mathbb{R}}$ is an \mathbb{R} -vector space of dimension n, thus $K_{\mathbb{R}} \simeq \mathbb{R}^n$, but this is an isomorphism of \mathbb{R} -vector spaces and is not an \mathbb{R} -algebra isomorphism unless s = 0.

We have a sequence of injective homomorphisms of topological rings

$$\mathcal{O}_K \hookrightarrow K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}},\tag{3}$$

which are defined as follows:

- the map $\mathcal{O}_K \hookrightarrow K$ is inclusion;
- the map $K \hookrightarrow K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$ is the canonical embedding $\alpha \mapsto \alpha \otimes 1$;
- the map $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s \hookrightarrow \mathbb{C}^r \times \mathbb{C}^{2s} \simeq K_{\mathbb{C}}$ embeds each factor of \mathbb{R}^r in a corresponding factor of \mathbb{C}^r via inclusion and each \mathbb{C} in \mathbb{C}^s is mapped to $\mathbb{C} \times \mathbb{C}$ in \mathbb{C}^{2s} via $z \mapsto (z, \bar{z})$.

To better understand the last map, note that each \mathbb{C} in \mathbb{C}^s arises as $\mathbb{R}[\alpha] = \mathbb{R}[x]/(f) \simeq \mathbb{C}$ for some monic irreducible $f \in \mathbb{R}[x]$ of degree 2, but when we base-change to \mathbb{C} the field $\mathbb{R}[\alpha]$ splits into the étale algebra $\mathbb{C}[x]/(x - \alpha) \times \mathbb{C}[x]/(x - \bar{\alpha}) \simeq \mathbb{C} \times \mathbb{C}$. The composition $K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ is given by the map

$$x \mapsto (\sigma_1(x), \ldots, \sigma_n(x)),$$

where $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) = \{\sigma_1, \ldots, \sigma_n\}$. If we put $K = \mathbb{Q}(\alpha) := K[x]/(f)$ and let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be the roots of f in \mathbb{C} , each σ_i is the \mathbb{Q} -algebra homomorphism $K \to \mathbb{C}$ defined by $\alpha \mapsto \alpha_i$.

If we fix a \mathbb{Z} -basis for \mathcal{O}_K , its image under the maps in (3) is a \mathbb{Q} -basis for K, a \mathbb{R} -basis for $K_{\mathbb{R}}$, and a \mathbb{C} -basis for $K_{\mathbb{C}}$, all of which are vector spaces of dimension $n = [K : \mathbb{Q}]$. We may thus view the injections in (3) as inclusions of topological groups (but not rings!)

$$\mathbb{Z}^n \hookrightarrow \mathbb{Q}^n \hookrightarrow \mathbb{R}^n \hookrightarrow \mathbb{C}^n.$$

The ring of integers \mathcal{O}_K is a lattice in the real vector space $K_{\mathbb{R}} \simeq \mathbb{R}^n$, which inherits an inner product from the canonical Hermitian inner product on $K_{\mathbb{C}} \simeq \mathbb{C}^n$ defined by

$$\langle z, z' \rangle := \sum_{i=1}^n z_i \bar{z}'_i \in \mathbb{C}.$$

For elements $x, y \in K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ the Hermitian inner product can be computed as

$$\langle x, y \rangle := \sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(x) \overline{\sigma(y)} \in \mathbb{R},$$
 (4)

which is a real number because the non-real embeddings in $\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$ come in complex conjugate pairs. The inner product defined in (4) agrees with the restriction of the Hermitian inner product on $K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$. The metric space topology it induces on $K_{\mathbb{R}}$ is the same as the Euclidean topology on $K_{\mathbb{R}} \simeq \mathbb{R}^n$ induced by the usual dot product on \mathbb{R}^n , but the corresponding norm $||x|| \coloneqq \langle x, x \rangle$ has a different normalization, as we now explain.

If we write elements $z \in K_{\mathbb{C}} \simeq \mathbb{C}^n$ as vectors (z_{σ}) indexed by the set $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ in some fixed order, we may identify $K_{\mathbb{R}}$ with its image in $K_{\mathbb{C}}$ as the set

$$K_{\mathbb{R}} = \{ z \in K_{\mathbb{C}} : \bar{z}_{\sigma} = z_{\bar{\sigma}} \text{ for all } \sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \}$$

For real embeddings $\sigma = \bar{\sigma}$ we have $z_{\sigma} \in \mathbb{R} \subseteq \mathbb{C}$, and for pairs of conjugate complex embeddings $(\sigma, \bar{\sigma})$ we get the embedding $z \mapsto (z_{\sigma}, z_{\bar{\sigma}}) = (z_{\sigma}, \bar{z}_{\sigma})$ of \mathbb{C} into $\mathbb{C} \times \mathbb{C}$ used to defined the map $K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ above. Each $z \in K_{\mathbb{R}}$ can be uniquely written in the form

$$(w_1, \ldots, w_r, x_1 + iy_1, x_1 - iy_1, \ldots, x_s + iy_s, x_s - iy_s),$$
 (5)

with $w_i, x_j, y_j \in \mathbb{R}$. Each w_i corresponds to a z_{σ} with $\sigma = \bar{\sigma}$, and each $(x_j + iy_j, x_j - iy_j)$ corresponds to a complex conjugate pair $(z_{\sigma}, z_{\bar{\sigma}})$ with $\sigma \neq \bar{\sigma}$. The canonical inner product on $K_{\mathbb{R}}$ can then be written as

$$\langle z, z' \rangle = \sum_{i=1}^{r} w_i w'_i + 2 \sum_{j=1}^{s} (x_j x'_j + y_j y'_j).$$

Thus if we take $w_1, \ldots, w_r, x_1, y_1, \ldots, x_x, y_s$ as coordinates for $K_{\mathbb{R}} \simeq \mathbb{R}^n$ (as \mathbb{R} -vector spaces), in order to normalize the Haar measure μ on $K_{\mathbb{R}}$ so that it is consistent with the Lebesgue measure $\mu_{\mathbb{R}^n}$ on \mathbb{R}^n we define

$$\mu(S) \coloneqq 2^s \mu_{\mathbb{R}^n}(S) \tag{6}$$

for any measurable set $S \subseteq K_{\mathbb{R}}$ that we may view as a subset of \mathbb{R}^n by expressing it in w_i, x_j, y_j coordinates as above. With this normalization, the identity (1) still holds when

we replace $\mu_{\mathbb{R}^n}$ with μ and the dot product on \mathbb{R}^n with the Hermitian inner product on $K_{\mathbb{R}}$, that is, for any \mathbb{R} -basis e_1, \ldots, e_n of $K_{\mathbb{R}}$ we still have

$$\mu(F(e_1,\ldots,e_n)) = \sqrt{|\det[\langle e_i,e_j\rangle]_{ij}|}$$
(7)

Using the Hermitian inner product on $K_{\mathbb{R}} \subseteq K_{\mathbb{C}}$ rather than the dot product on $K_{\mathbb{R}} \simeq \mathbb{R}^n$ multiplies 2s of the columns in the matrix $[\langle e_i, e_j]_{ij}$ by 2, and thus multiplies the RHS by $\sqrt{2^{2s}} = 2^s$; our normalization of $\mu = 2^s \mu_{\mathbb{R}^n}$ multiplies the LHS by 2^s so that (7) still holds.

14.3 Covolumes of fractional ideals

Having fixed a normalized Haar measure μ for $K_{\mathbb{R}}$, we can now compute covolumes of lattices in $K_{\mathbb{R}} \simeq \mathbb{R}^n$. This includes not only (the image of) the ring of integers \mathcal{O}_K , but also any nonzero fractional ideal I of \mathcal{O}_K : every such I contains a nonzero principal fraction ideal $a\mathcal{O}_K$, and if e_1, \ldots, e_n is a \mathbb{Z} -basis for \mathcal{O}_K then ae_1, \ldots, ae_n is a \mathbb{Z} -basis for $a\mathcal{O}_K$ that is an \mathbb{R} -basis for $K_{\mathbb{R}}$ that lies in I.

Recall from Remark 12.14 that the discriminant of a number field K is the integer

$$D_K \coloneqq \operatorname{disc} \mathcal{O}_K \coloneqq \operatorname{disc}(e_1, \dots, e_n) \in \mathbb{Z}.$$

Proposition 14.12. Let K be a number field. Using the normalized Haar measure on $K_{\mathbb{R}}$ defined in (6),

$$\operatorname{covol}(\mathcal{O}_K) = \sqrt{|D_K|}.$$

Proof. Let $e_1, \ldots, e_n \in \mathcal{O}_K$ be a \mathbb{Z} -basis for \mathcal{O}_K , let $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) = \{\sigma_1, \ldots, \sigma_n\}$, and define $A := [\sigma_i(e_j)]_{ij} \in \mathbb{C}^{n \times n}$. Then $D_K = \operatorname{disc}(e_1, \ldots, e_n) = (\det A)^2$, by Proposition 12.6

Viewing $\mathcal{O}_K \hookrightarrow K_{\mathbb{R}}$ as a lattice in $K_{\mathbb{R}}$ with basis e_1, \ldots, e_n , we may use (7) to compute $\operatorname{covol}(\mathcal{O}_K) = \mu(F(e_1, \ldots, e_n)) = \sqrt{|\det[\langle e_i, e_j \rangle]_{ij}|}$. Applying (4) yields

$$\det[\langle e_i, e_j \rangle]_{ij} = \det\left[\sum_k \sigma_k(e_i)\overline{\sigma_k(e_j)}\right]_{ij} = \det(A^{\mathsf{t}}\overline{A}) = (\det A)(\det \overline{A}).$$

Noting that det A is the square root of an integer (hence either real or purely imaginary), we have $\operatorname{covol}(\mathcal{O}_K)^2 = |(\det A)^2| = |D_K|$, and the proposition follows.

Recall from Remark 6.13 that for number fields K we view the absolute norm

$$N: \mathcal{I}_{\mathcal{O}_K} \to \mathcal{I}_{\mathbb{Z}}$$
$$I \mapsto [\mathcal{O}_K: I]_{\mathbb{Z}}$$

as having image in $\mathbb{Q}_{>0}$ by identifying $N(I) \in \mathcal{I}_{\mathbb{Z}}$ with a positive generator for N(I) (note that \mathbb{Z} is a PID). Recall that $[\mathcal{O}_K : I]_{\mathbb{Z}}$ is a module index of \mathbb{Z} -lattices in the \mathbb{Q} -vector space K, see Definitions 6.1 and 6.5), and for ideals $I \subseteq \mathcal{O}_K$ this is just the positive integer $[\mathcal{O}_K:I]_{\mathbb{Z}} = [\mathcal{O}_K:I]$. When I = (a) is a principal fractional ideal with $a \in K$, we may simply write $N(a) := N((a)) = |N_{K/\mathbb{Q}}(a)|$

Corollary 14.13. Let K be a number field and let I be a nonzero fractional ideal of \mathcal{O}_K . Then

$$\operatorname{covol}(I) = \operatorname{N}(I)\sqrt{|D_K|}$$

Proof. Let $n = [K:\mathbb{Q}]$. Since $\operatorname{covol}(bI) = b^n \operatorname{covol}(I)$ and $\operatorname{N}(bI) = b^n \operatorname{N}(I)$ for any $b \in \mathbb{Z}_{>0}$, without loss of generality we may assume $I \subseteq \mathcal{O}_K$ (replace I with a suitable bI if not). Applying Propositions 14.9 and 14.12, we have

$$\operatorname{covol}(I) = [\mathcal{O}_K : I] \operatorname{covol}(\mathcal{O}_K) = \operatorname{N}(I) \operatorname{covol}(\mathcal{O}_K) = \operatorname{N}(I) \sqrt{|D_K|}$$

as claimed.

14.4 The Minkowski bound

Theorem 14.14. MINKOWSKI BOUND Let K be a number field of degree n with s complex places. Define the Minkowski constant m_K for K as the positive real number

$$m_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|D_K|}.$$

For every nonzero fractional ideal I of \mathcal{O}_K there is a nonzero $a \in I$ for which

 $N(a) \le m_K N(I).$

To prove this theorem we need the following lemma.

Lemma 14.15. Let K be a number field of degree n with r real and s complex places. For each $t \in \mathbb{R}_{>0}$, the measure of the convex symmetric set

$$S_t := \left\{ (z_\sigma) \in K_{\mathbb{R}} : \sum |z_\sigma| \le t \right\} \subseteq K_{\mathbb{R}}$$

with respect to the normalized Haar measure μ on $K_{\mathbb{R}}$ is

$$\mu(S_t) = 2^r \pi^s \frac{t^n}{n!}$$

Proof. As in (5), we may uniquely write each $z = (z_{\sigma}) \in K_{\mathbb{R}}$ in the form

$$(w_1, \ldots, w_r, x_1 + iy_1, x_1 - iy_1 \ldots, x_s + iy_s, x_s - iy_s)$$

with $w_i, x_j, y_j \in \mathbb{R}$. We will have $\sum_{\sigma} |z_{\sigma}| \leq t$ if and only if

$$\sum_{i=1}^{r} |w_i| + \sum_{j=1}^{s} 2\sqrt{|x_j|^2 + |y_j|^2} \le t.$$
(8)

We now compute the volume of this region in \mathbb{R}^n by relating it to the volume of the simplex

$$U_t := \left\{ (u_1, \dots, u_n) \in \mathbb{R}^n_{\geq 0} \colon u_1 + \dots + u_n \leq t \right\} \subseteq \mathbb{R}^n,$$

which is $\mu_{\mathbb{R}^n}(U_t) = t^n/n!$ (volume of the standard simplex in \mathbb{R}^n scaled by a factor of t).

If we view all the w_i, x_j, y_j as fixed except the last pair (x_s, y_s) , then (x_s, y_s) ranges over a disk of some radius $d \in [0, t/2]$ determined by (8). If we replace (x_s, y_s) with (u_{n-1}, u_n) ranging over the triangular region bounded by $u_{n-1} + u_n \leq 2d$ and $u_{n-1}, u_n \geq 0$, we need to incorporate a factor of $\pi/2$ to account for the difference between $(2d)^2/2 = 2d^2$ and πd^2 ; repeat this s times. Similarly, if we hold everything but w_r fixed and replace w_r ranging over [-d, d] for some $d \in [0, t]$ with u_r ranging over [0, d], we need to incorporate a factor of 2 to account for this change of variable; repeat r times. We then have

$$\mu(S_t) = 2^s \mu_{\mathbb{R}^n}(S_t) = 2^s \left(\frac{\pi}{2}\right)^s 2^r \mu_{\mathbb{R}^n}(U) = 2^r \pi^s \frac{t^n}{n!}.$$

18.785 Fall 2018, Lecture #14, Page 6

Proof of Theorem 14.14. Let I be a nonzero fractional ideal of \mathcal{O}_K . By Theorem 14.11, if we choose t so that $\mu(S_t) > 2^n \operatorname{covol}(I)$, then S_t will contain a nonzero $a \in I$. By Lemma 14.15 and Corollary 14.13, it suffices to choose t so that

$$\left(\frac{t}{n}\right)^n = \frac{n!\mu(S_t)}{n^n 2^r \pi^s} > \frac{n!2^n}{n^n 2^r \pi^s} \operatorname{covol}(I) = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|D_K|} \operatorname{N}(I) = m_K \operatorname{N}(I).$$

Let us now pick t so that $\left(\frac{t}{n}\right)^n > m_K N(I)$. Then S_t contains $a \in I$ with $\sum_{\sigma} |\sigma(a)| \leq t$ Recalling that the geometric mean is bounded above by the arithmetic mean, we then have

$$\mathcal{N}(a) = \left(\mathcal{N}(a)^{1/n}\right)^n = \left(\prod_{\sigma} |\sigma(a)|^{1/n}\right)^n \le \left(\frac{1}{n}\sum_{\sigma} |\sigma(a)|\right)^n \le \left(\frac{t}{n}\right)^n,$$

Taking the limit as $\left(\frac{t}{n}\right)^n \to m_K \mathcal{N}(I)$ from above yields $\mathcal{N}(a) \le m_K \mathcal{N}(I)$.

14.5 Finiteness of the ideal class group

Recall that the ideal class group $\operatorname{cl} \mathcal{O}_K$ is the quotient of the ideal group \mathcal{I}_K of \mathcal{O}_K by its subgroup of principal fractional ideals. We now use the Minkowski bound to prove that every ideal class $[I] \in \operatorname{cl} \mathcal{O}_K$ can be represented by an ideal $I \subseteq \mathcal{O}_K$ of small norm. It will then follow that the ideal class group is finite.

Theorem 14.16. Let K be a number field. Every ideal class in $\operatorname{cl} \mathcal{O}_K$ contains an ideal $I \subseteq \mathcal{O}_K$ of absolute norm $\operatorname{N}(I) \leq m_K$, where m_K is the Minkowski constant for K.

Proof. Let [J] be an ideal class of \mathcal{O}_K represented by the nonzero fractional ideal J. By Theorem 14.14, the fractional ideal J^{-1} contains a nonzero element a for which

$$N(a) \le m_K N(J^{-1}) = m_K N(J)^{-1},$$

and therefore $N(aJ) = N(a)N(J) \le m_K$. We have $a \in J^{-1}$, thus $aJ \subseteq J^{-1}J = \mathcal{O}_K$, so I = aJ is an \mathcal{O}_K -ideal in the ideal class [J] with $N(I) \le m_K$ as desired. \Box

Lemma 14.17. Let K be a number field and let M be a real number. The set of ideals $I \subseteq \mathcal{O}_K$ with $N(I) \leq M$ is finite.

Proof 1. As a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^n$, the additive group $\mathcal{O}_K \simeq \mathbb{Z}^n$ has only finitely many subgroups I of index m for each positive integer $m \leq M$, since $[\mathbb{Z}^n:I] = m$ implies

$$(m\mathbb{Z})^n \subseteq I \subseteq \mathbb{Z}^n$$

and $(m\mathbb{Z})^n$ has finite index $m^n = [\mathbb{Z}^n : m\mathbb{Z}^n] = [\mathbb{Z} : m\mathbb{Z}]^n$ in \mathbb{Z}^n .

The proof of Lemma 14.17 is effective: the number of ideals $I \subseteq \mathcal{O}_K$ with $N(I) \leq M$ clearly cannot exceed M^{n+1} . But in fact we can give a much better bound than this.

Proof 2. Let I be an ideal of absolute norm $N(I) \leq M$ and let $I = \mathfrak{p}_1 \cdots \mathfrak{p}_k$ be its factorization into (not necessarily distinct) prime ideals. Then $M \geq N(I) = N(\mathfrak{p}_1) \cdots N(\mathfrak{p}_k) \geq 2^k$, since the norm of each \mathfrak{p}_i is a prime power, and in particular, at least 2. It follows that $k \leq \log_2 M$ is bounded, independent of I. Each prime ideal \mathfrak{p} lies above some prime $p \leq M$, of which there are fewer than M, and for each prime p the number of primes $\mathfrak{p}|p$ is at most n. Thus there are fewer than $(nM)^{\log_2 M}$ ideals of norm at most M in \mathcal{O}_K .

Corollary 14.18. Let K be a number field. The ideal class group of \mathcal{O}_K is finite.

Proof. By Theorem 14.16, each ideal class is represented by an ideal of norm at most m_K , and by Lemma 14.17, the number of such ideals is finite.

Remark 14.19. For imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-d})$ it is known that the class number $h_K := \# \operatorname{cl} \mathcal{O}_K$ tends to infinity as $d \to \infty$ ranges over square-free integers. This was conjectured by Gauss in his Disquisitiones Arithmeticae [3] and proved by Heilbronn [5] in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [6]. This implies that there are only a finite number of imaginary quadratic fields with any particular class number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields with class number one, but this was not proved until the 20th century by Stark [7] and Heegner [4].¹ Complete lists of imaginary quadratic fields for each class number $h_K \leq 100$ are now available [9]. By contrast, Gauss predicted that infinitely many real quadratic fields should have class number 1, however this question remains completely open.²

Corollary 14.20. Let K be a number field of degree n with s complex places. Then

$$|D_K| \ge \left(\frac{n^n}{n!}\right)^2 \left(\frac{\pi}{4}\right)^{2s} > \frac{1}{e^{2n}} \left(\frac{\pi e^2}{4}\right)^n.$$

Proof. If I is an ideal and $a \in I$ is nonzero, then $N(a) \ge N(I)$, so Theorem 14.16 implies

$$m_K = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|D_K|} \ge 1,$$

the first inequality follows. The second uses an explicit form of Stirling's approximation,

$$n! \le e\sqrt{n} \left(\frac{n}{e}\right)^n,$$

and the fact that $2s \leq n$.

We note that $\pi e^2/4 \approx 5.8 > 1$, so the minimum value of $|D_K|$ increases exponentially with $n = [K:\mathbb{Q}]$. The lower bounds for $n \in [2,7]$ given by the corollary are listed below, along with the least value of $|D_K|$ that actually occurs. As can be seen in the table, $|D_K|$ appears to grow much faster than the corollary suggests. Better lower bounds can be proved using more advanced techniques, but a significant gap still remains.

	n=2	n=3	n = 4	n = 5	n = 6	n=7
lower bound from Corollary 14.20	3	13	44	259	986	6267
minimum value of $ D_K $	3	23	275	4511	92799	2306599

Corollary 14.21. If K is a number field other than \mathbb{Q} then $|D_K| > 1$; equivalently, there are no nontrivial unramified extensions of \mathbb{Q} .

Theorem 14.22. For every real M the set of number fields K with $|D_K| < M$ is finite.

¹Heegner's 1952 result [4] was essentially correct but contained some gaps that prevented it from being generally accepted until 1967 when Stark gave a complete proof in [7].

²In fact it is conjectured that $h_K = 1$ for approximately 75.446% of real quadratic fields with prime discriminant; this follows from the Cohen-Lenstra heuristics [2].

Proof. It follows from Corollary 14.20 that it suffices to prove this for fixed $n := [K : \mathbb{Q}]$, since for all sufficiently large n we will have $|D_K| > M$ for all number fields K of degree n.

Case 1: Let K be a totally real field (so every place $v | \infty$ is real) with $|D_K| < M$. Then r = n and s = 0, so $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s = \mathbb{R}^n$. Consider the convex symmetric set

$$S := \{ (x_1, \dots, x_n) \in K_{\mathbb{R}} \simeq \mathbb{R}^n : |x_1| \le \sqrt{M} \text{ and } |x_i| < 1 \text{ for } i > 1 \}$$

with measure

$$\mu(S) = 2\sqrt{M}2^{n-1} = 2^n\sqrt{M} > 2^n\sqrt{|D_K|} = 2^n \operatorname{covol}(\mathcal{O}_K).$$

By Theorem 14.11, the set S contains a nonzero $a \in \mathcal{O}_K \subseteq K \hookrightarrow K_{\mathbb{R}}$ that we may write as $a = (a_1, \ldots, a_n) = (\sigma_1(a), \ldots, \sigma_n(a))$, where the σ_i are the n embeddings of K into \mathbb{C} , all of which are real embeddings. We have

$$\mathbf{N}(a) = \left| \prod_{i} \sigma_i(a) \right| \ge 1,$$

since N(a) must be a positive integer, and $|a_2|, \ldots, |a_n| < 1$, so $|a_1| > 1 > |a_i|$ for all $i \neq 1$.

We claim that $K = \mathbb{Q}(a)$. If not, each $a_i = \sigma_i(a)$ would be repeated $[K : \mathbb{Q}(a)] > 1$ times in the vector (a_1, \ldots, a_n) , since there must be $[K : \mathbb{Q}(a)]$ elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ that fix $\mathbb{Q}(a)$, namely, those lying in the kernel of the map $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \to \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(a), \mathbb{C})$ induced by restriction. But this is impossible since $a_i \neq a_1$ for $i \neq 1$.

The minimal polynomial $f \in \mathbb{Z}[x]$ of a is a monic irreducible polynomial of degree n. The roots of f(x) in \mathbb{C} are precisely the $a_i = \sigma_i(a) \in \mathbb{R}$, all of which are bounded by $|a_i| \leq \sqrt{M}$. Each coefficient f_i of f(x) is an elementary symmetric functions of its roots, hence also bounded in absolute value (certainly $|f_i| \leq 2^n M^{n/2}$ for all i). The f_i are integers, so there are only finitely many possibilities for f(x), hence only finitely many totally real number fields K of degree n.

Case 2: K has r real and s > 0 complex places, and $K_{\mathbb{R}} \simeq \mathbb{R}^r \times \mathbb{C}^s$. Now let

$$S := \{ (w_1, \dots, w_r, z_1, \dots, z_s) \in K_{\mathbb{R}} : |z_1|^2 < c\sqrt{M} \text{ and } |w_i|, |z_j| < 1 \ (j > 1) \}$$

with c chosen so that $\mu(S) > 2^n \operatorname{covol}(\mathcal{O}_K)$ (the exact value of c depends on s and n). The argument now proceeds as in case 1: we get a nonzero $a \in \mathcal{O}_K \cap S$ for which $K = \mathbb{Q}(a)$, and only a finite number of possible minimal polynomials $f \in \mathbb{Z}[x]$ for a. \Box

Lemma 14.23. Let K be a number field of degree n. For each prime number p we have

$$v_p(D_K) \le n \lfloor \log_p n \rfloor + n - 1.$$

In particular, $v_p(D_K) \le n \lfloor \log_2 n \rfloor + n - 1$ for all p.

Proof. We have

$$v_p(D_K) = v_p(N_{K/\mathbb{Q}}(\mathcal{D}_{K/\mathbb{Q}})) = \sum_{\mathfrak{q}|p} f_{\mathfrak{q}} v_{\mathfrak{q}}(\mathcal{D}_{K/\mathbb{Q}})$$

where $\mathcal{D}_{K/\mathbb{Q}}$ is the different ideal and $f_{\mathfrak{q}}$ is the residue degree of $\mathfrak{q}|p$. Using Theorem 12.26 to bound $v_{\mathfrak{q}}(\mathcal{D}_{K/\mathbb{Q}})$ yields

$$v_p(D_K) \leq \sum_{\mathfrak{q}|p} f_{\mathfrak{q}}(e_{\mathfrak{q}} - 1 + v_{\mathfrak{q}}(e_{\mathfrak{q}})) = n - \sum_{q|p} f_{\mathfrak{q}} + \sum_{\mathfrak{q}|p} f_{\mathfrak{q}}e_{\mathfrak{q}}v_p(e_{\mathfrak{q}}) \leq n - 1 + n\lfloor \log_p n \rfloor,$$

where we have used -1 as an upper bound on $-\sum_{\mathfrak{q}|p} f_{\mathfrak{q}}$ and $\lfloor \log_p n \rfloor$ as an upper bound on each $v_p(e_{\mathfrak{q}})$ (since $e_{\mathfrak{q}} \leq n$), and the fact that $\sum_{\mathfrak{q}|p} e_{\mathfrak{q}} f_{\mathfrak{q}} = n$ (by Theorem 5.34).

Remark 14.24. The bound in Lemma 14.23 is tight; it is achieved by $K = \mathbb{Q}[x]/(x^{p^e} - p)$, for example.

Theorem 14.25 (Hermite). Let S be a finite set of places of \mathbb{Q} , and let n be an integer. The number of extensions K/\mathbb{Q} of degree n unramified outside of S is finite.

Proof. By Lemma 14.23, since n is fixed, the valuation $v_p(D_K)$ is bounded for each $p \in S$ and must be zero for $p \notin S$. Thus $|D_K|$ is bounded, and the theorem then follows from Proposition 14.22.

References

- [1] Nicolas Bourbaki, General Topology: Chapters 1-4, Springer, 1995.
- [2] Henri Cohen and Hendrik W. Lenstra Jr., *Heuristics on class groups of number fields*, in *Number Theory (Noordwijkerhout 1983)*, Lecture Notes in Mathematics 1068, Springer, 1984, 33–62.
- [3] Carl F. Gauss, *Disquisitiones Arithmeticae*, Göttingen (1801), English translation by Arthur A. Clark, revised by William C. Waterhouse, Spring-Verlag 1986 reprint of Yale University Press 1966 edition.
- [4] Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227– 253.
- [5] Hans Heilbronn, On the class number in imaginary quadratic fields, Quart. J. of Math. Oxford 5 (1934), 150–160.
- [6] Joseph Oesterlé, La probléme de Gauss sur le nombre de classes, Enseign. Math. 34 (1988), 43–67.
- [7] Harold Stark, A complete determination of the complex quadratic fields of class-number one, Mich. Math. J. 14 (1967), 1–27.
- [8] Terence Tao, An introduction to measure theory, Graduate Studies in Mathematics **126**, AMS, 2010.
- [9] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907–938.