12 The different and the discriminant

12.1 The different

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field, L/K is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain with fraction field L). We would like to understand the primes that ramify in L/K. Recall that a prime $\mathfrak{q}|\mathfrak{p}$ of L is unramified if and only if $e_{\mathfrak{q}}=1$ and B/\mathfrak{q} is a separable extension of A/\mathfrak{p} , equivalently, if and only if $B/\mathfrak{q}^{e_{\mathfrak{q}}}$ is a finite étale A/\mathfrak{p} algebra (by Theorem 4.40). A prime \mathfrak{p} of K is unramified if and only if all the primes $\mathfrak{q}|\mathfrak{p}$ lying above it are unramified, equivalently, if and only if the ring $B/\mathfrak{p}B$ is a finite étale A/\mathfrak{p} algebra.

Our main tools for studying ramification are the different $\mathcal{D}_{B/A}$ and discriminant $D_{B/A}$. The different is a B-ideal that is divisible by precisely the ramified primes \mathfrak{q} of L, and the discriminant is an A-ideal divisible by precisely the ramified primes \mathfrak{p} of K. Moreover, the valuation $v_{\mathfrak{q}}(\mathcal{D}_{B/A})$ will give us information about the ramification index $e_{\mathfrak{q}}$ (its exact value when \mathfrak{q} is tamely ramified).

Recall from Lecture 5 the trace pairing $L \times L \to K$ defined by $(x, y) \mapsto T_{L/K}(xy)$; under our assumption that L/K is separable, it is a perfect pairing. An A-lattice M in L is a finitely generated A-module that spans L as a K-vector space (see Definition 5.9). Every A-lattice M in L has a dual lattice (see Definition 5.11)

$$M^* := \{ x \in L : T_{L/K}(xm) \in A \ \forall m \in M \},$$

which is an A-lattice in L isomorphic to the dual A-module $M^{\vee} := \operatorname{Hom}_A(M, A)$ (see Theorem 5.12). In our AKLB setting we have $M^{**} = M$, by Proposition 5.16.

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely generated as an A module (since B is finite over A). If I is nonzero, it necessarily spans L, since B does. It follows that every element of the group \mathcal{I}_B of nonzero fractional ideals of B is an A-lattice in L. We now show that \mathcal{I}_B is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB. If
$$I \in \mathcal{I}_B$$
 then $I^* \in \mathcal{I}_B$.

Proof. The dual lattice I^* is a finitely generated A-module, thus to show that it is a finitely generated B-module it is enough to show it is closed under multiplication by elements of B. So consider any $b \in B$ and $x \in I^*$. For all $m \in I$ we have $T_{L/K}((bx)m) = T_{L/K}(x(bm)) \in A$, since $x \in I^*$ and $bm \in I$, so $bx \in I^*$ as desired.

Definition 12.2. Assume AKLB. The different $\mathcal{D}_{L/K}$ of L/K (and the different $\mathcal{D}_{B/A}$ of B/A), is the inverse of B^* in \mathcal{I}_B . Explicitly, we have

$$B^* := \{ x \in L : T_{L/K}(xb) \in A \text{ for all } b \in B \},$$

and we define

$$\mathcal{D}_{L/K} := \mathcal{D}_{B/A} := (B^*)^{-1} = (B : B^*) = \{x \in L : xB^* \subseteq B\}.$$

Note that $B \subseteq B^*$, since $T_{L/K}(ab) \in A$ for $a, b \in B$ (by Corollary 4.53), and this implies $\mathcal{D}_{B/A} = (B^*)^{-1} \subseteq B^{-1} = B$. Thus the different is an ideal, not just a fractional ideal.

¹Note that B/\mathfrak{q}^{e_q} is reduced if and only if $e_{\mathfrak{q}}=1$; consider the image of a uniformizer in B/\mathfrak{q}^{e_q} .

²As usual, by a *prime* of A or K we mean a nonzero prime ideal of A, and similarly for B and L. The notation $\mathfrak{q}|\mathfrak{p}$ means that \mathfrak{q} is a prime of B lying above \mathfrak{p} (so $\mathfrak{p} = \mathfrak{q} \cap A$ and \mathfrak{q} divides $\mathfrak{p}B$).

The different respects localization and completion.

Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

$$S^{-1}\mathcal{D}_{B/A} = \mathcal{D}_{S^{-1}B/S^{-1}A}.$$

Proof. This follows from the fact that inverses and duals are both compatible with localization, by Lemmas 3.5 and 5.15.

Proposition 12.4. Assume AKLB and let $\mathfrak{q}|\mathfrak{p}$ be a prime of B. Then

$$\mathcal{D}_{\hat{B}_{\mathfrak{q}}/\hat{A}_{\mathfrak{p}}} = \mathcal{D}_{B/A}\hat{B}_{\mathfrak{q}},$$

where $\hat{A}_{\mathfrak{p}}$ and $\hat{B}_{\mathfrak{q}}$ are the completions of A and B at \mathfrak{p} and \mathfrak{q} , respectively.

Proof. Let $\hat{L} := L \otimes K_{\mathfrak{p}}$ be the base change of the finite étale K-algebra L to $K_{\mathfrak{p}}$. By (5) of Theorem 11.23, we have $\hat{L} \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} L_{\mathfrak{q}}$. Note that even though \hat{L} need not be a field, in general, is is a free $K_{\mathfrak{p}}$ -module of finite rank, and is thus equipped with a trace map that necessarily satisfies $\mathrm{T}_{\hat{L}/K_{\mathfrak{p}}}(x) = \sum_{\mathfrak{q} \mid \mathfrak{p}} \mathrm{T}_{\hat{L}/K_{\mathfrak{p}}}(x)$ that defines a trace pairing on \hat{L} .

Now let $\hat{B} := B \otimes \hat{A}_{\mathfrak{p}}$; it is an $A_{\mathfrak{p}}$ -lattice in the $K_{\mathfrak{p}}$ -vector space \hat{L} . By Corollary 11.26, $\hat{B} \simeq \prod_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}} \simeq \bigoplus_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}$, and therefore $\hat{B}^* \simeq \bigoplus_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}^*$, by Corollary 5.13. It follows that $\hat{B}^* \simeq B^* \otimes_A \hat{A}_{\mathfrak{p}}$. In particular, B^* generates each fractional ideal $\hat{B}_{\mathfrak{q}}^* \in \mathcal{I}_{\hat{B}_{\mathfrak{q}}}$. Taking inverses, $\mathcal{D}_{B/A} = (B^*)^{-1}$ generates the $\hat{B}_{\mathfrak{q}}$ -ideal $(\hat{B}_{\mathfrak{q}}^*)^{-1} = \mathcal{D}_{\hat{B}_{\mathfrak{q}}/\hat{A}_{\mathfrak{p}}}$.

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension in which S is a free R-module of rank n. For any $x_1, \ldots, x_n \in S$ we define the *discriminant*

$$\operatorname{disc}(x_1,\ldots,x_n) \coloneqq \operatorname{disc}_{S/R}(x_1,\ldots,x_n) \coloneqq \operatorname{det}[T_{S/R}(x_ix_j)]_{i,j} \in R.$$

Note that we do not require x_1, \ldots, x_n to be an R-basis for S, but if they satisfy a non-trivial R-linear relation then the discriminant will be zero (by linearity of the trace).

In our AKLB setup, we have in mind the case where $e_1, \ldots, e_n \in B$ is a basis for L as a K-vector space, in which case $\operatorname{disc}(e_1, \ldots, e_n) = \operatorname{det}[\operatorname{T}_{L/K}(e_i e_j)]_{ij} \in A$. Note that we do not need to assume that B is a free A-module; L is certainly a free K-module. The fact that the discriminant lies in A when $e_1, \ldots, e_n \in B$ follows immediately from Corollary 4.53.

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let Ω/K be a field extension for which there are distinct $\sigma_1, \ldots, \sigma_n \in \operatorname{Hom}_K(L,\Omega)$. For any $e_1, \ldots, e_n \in L$ we have

$$\operatorname{disc}(e_1,\ldots,e_n) = \det[\sigma_i(e_j)]_{ij}^2,$$

and for any $x \in L$ we have

$$\operatorname{disc}(1, x, x^2, \dots, x^{n-1}) = \prod_{i < j} (\sigma_i(x) - \sigma_j(x))^2.$$

Such a field extension Ω/K always exists, since L/K is separable ($\Omega = K^{\text{sep}}$ works).

Proof. For $1 \le i, j \le n$ we have $T_{L/K}(e_i e_j) = \sum_{k=1}^n \sigma_k(e_i e_j)$, by Theorem 4.50. Therefore

$$\operatorname{disc}(e_1, \dots, e_n) = \operatorname{det}[\operatorname{T}_{L/K}(e_i e_j)]_{ij}$$

$$= \operatorname{det}([\sigma_k(e_i)]_{ik}[\sigma_k(e_j)]_{kj})$$

$$= \operatorname{det}([\sigma_k(e_i)]_{ik}[\sigma_k(e_j)]_{jk}^{t})$$

$$= \operatorname{det}[\sigma_i(e_j)]_{ij}^2$$

since the determinant is multiplicative and $\det M = \det M^{t}$ for any matrix M.

Now let $x \in L$ and put $e_i := x^{i-1}$ for $1 \le i \le n$. Then

$$\operatorname{disc}(1, x, x^2, \dots, x^{n-1}) = \det[\sigma_i(x^{j-1})]_{ij}^2 = \det[\sigma_i(x)^{j-1}]_{ij}^2 = \prod_{i < j} (\sigma_i(x) - \sigma_j(x))^2,$$

since $[\sigma_i(x)^{j-1}]_{ij}$ is a Vandermonde matrix (rows of the form z^0, \ldots, z^{n-1} for some z); see [2, p. 258] for a proof of this standard fact.

Definition 12.7. For a polynomial $f(x) = \prod_i (x - \alpha_i)$, the discriminant of f is

$$\operatorname{disc}(f) := \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Equivalently, if A is a Dedekind domain, $f \in A[x]$ is a monic separable polynomial, and α is the image of x in A[x]/(f(x)), then

$$\operatorname{disc}(f) = \operatorname{disc}(1, \alpha, \alpha^2, \dots, \alpha^{n-1}) \in A.$$

Example 12.8. $\operatorname{disc}(x^2 + bx + c) = b^2 - 4c$ and $\operatorname{disc}(x^3 + ax + b) = -4a^3 - 27b^2$.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated A-module that contains a K-basis for L. We want to define the discriminant of M in a way that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If $e_1, \ldots, e_n \in M \subseteq L$ and $e'_1, \ldots, e'_n \in M \subseteq L$ are two A-bases for M, then

$$\operatorname{disc}(e'_1,\ldots,e'_n) = u^2 \operatorname{disc}(e_1,\ldots,e_n)$$

for some unit $u \in A^{\times}$; this follows from the fact that the change of basis matrix $P \in A^{n \times n}$ is invertible and its determinant is therefore a unit u. This unit gets squared because we need to apply the change of basis matrix twice in order to change $T(e_i e_j)$ to $T(e_i' e_j')$. Explicitly, writing bases as row-vectors, let $e = (e_1, \ldots, e_n)$ and $e' = (e_1', \ldots, e_n')$ satisfy e' = eP. Then

$$\operatorname{disc}(e') = \det[\operatorname{T}_{L/K}(e'_i e'_j)]_{ij}$$

$$= \det[\operatorname{T}_{L/K}((eP)_i (eP)_j)]_{ij}$$

$$= \det[P^{\operatorname{t}} \operatorname{T}_{L/K}(e_i e_j) P]_{ij}$$

$$= (\det P^{\operatorname{t}}) \operatorname{disc}(e) (\det P)$$

$$= (\det P)^2 \operatorname{disc}(e),$$

where we have used the linearity of $T_{L/K}$ to go from the second equality to the third.

This actually gives us a basis independent definition when $A = \mathbb{Z}$. In this case B is always a free \mathbb{Z} -lattice, and the only units in \mathbb{Z} are $u = \pm 1$, so $u^2 = 1$.

Definition 12.9. Assume AKLB, let M be an A-lattice in L, and let n := [L:K]. The discriminant D(M) of M is the A-module generated by $\{\operatorname{disc}(x_1,\ldots,x_n):x_1,\ldots,x_n\in M\}$.

Lemma 12.10. Assume AKLB and let $M' \subseteq M$ be free A-lattices in L. The discriminants $D(M') \subseteq D(M)$ are nonzero principal fractional ideals. If D(M') = D(M) then M' = M.

Proof. Let $e := (e_1, \ldots, e_n)$ be an A-basis for M. Then $\operatorname{disc}(e) \in D(M)$, and for any row vector $x := (x_1, \ldots, x_n)$ with entries in M there is a matrix $P \in A^{n \times n}$ for which x = eP, and we then have $\operatorname{disc}(x) = (\det P)^2 \operatorname{disc}(e)$ as above. It follows that

$$D(M) = (\operatorname{disc}(e))$$

is principal, and it is nonzero because e is a basis for L and the trace pairing is nondegenerate. If we now let $e' := (e'_1, \ldots, e'_n)$ be an A-basis for M' then $D(M') = (\operatorname{disc}(e'))$ is also a nonzero and principal. Our assumption that $M' \subseteq M$ implies that e' = eP for some matrix $P \in A^{n \times n}$, and we have $\operatorname{disc}(e') = (\det P)^2 \operatorname{disc}(e)$. If D(M') = D(M) then $\det P$ must be a unit, in which case P is invertible and $e = e'P^{-1}$. This implies $M \subseteq M'$.

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then $D(M) \in \mathcal{I}_A$.

Proof. The A-module $D(M) \subseteq K$ is nonzero because M contains a K-basis $e = (e_1, \ldots, e_n)$ for L and $\operatorname{disc}(e) \neq 0$ because the trace pairing is nondegenerate. To show that D(M) is a finitely generated A-module (and thus a fractional ideal), we use the usual trick: make it a submodule of a noetherian module. So let N be the free A-lattice in L generated by e and then pick a nonzero e0 E1 such that E2 E3 uch that E4 such that E4 denominators that appear; note that E4 is finitely generated). We then have E4 be the product of all the denominators that appear; note that E5 finitely generated). We then have E6 E7 is noetherian), so its submodule E8 E9 E9 is noetherian), so its submodule E9 E9 in the finitely generated.

Definition 12.12. Assume AKLB. The discriminant $D_{L/K}$ of L/K (and the discriminant $D_{B/A}$ of B/A) is the discriminant of B as an A-module:

$$D_{L/K} := D_{B/A} := D(B) \in \mathcal{I}_A,$$

which is an A-ideal, since $\operatorname{disc}(x_1,\ldots,x_n)=\det[T_{B/A}(x_ix_j)]_{i,j}\in A$ for all $x_1,\ldots,x_n\in B$.

Example 12.13. Consider the case $A = \mathbb{Z}$, $K = \mathbb{Q}$, $L = \mathbb{Q}(i)$, $B = \mathbb{Z}[i]$. Then B is a free A-lattice with basis (1,i) and we can compute $D_{L/K}$ in three ways:

- $\bullet \ \operatorname{disc}(1,i) = \det \begin{bmatrix} \operatorname{T}_{L/K}(1\cdot 1) & \operatorname{T}_{L/K}(1\cdot i) \\ \operatorname{T}_{L/K}(i\cdot 1) & \operatorname{T}_{L/K}(i\cdot i) \end{bmatrix} = \det \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = -4.$
- The non-trivial automorphism of L/K fixes 1 and sends i to -i, so we could instead compute $\operatorname{disc}(1,i) = \left(\det \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}\right)^2 = (-2i)^2 = -4$.
- We have $B = \mathbb{Z}[i] = \mathbb{Z}[x]/(x^2+1)$ and can compute $\operatorname{disc}(x^2+1) = -4$.

In every case the discriminant $D_{L/K}$ is the ideal (-4) = (4).

Remark 12.14. If $A = \mathbb{Z}$ then B is the ring of integers of the number field L, and B is a free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In this situation it is customary to define the *absolute discriminant* D_L of the number field L to be the *integer* $\operatorname{disc}(e_1, \ldots, e_n) \in \mathbb{Z}$, for any basis (e_1, \ldots, e_n) of B, rather than the ideal it generates. As noted above, this integer is independent of the choice of basis because $u^2 = 1$ for all $u \in \mathbb{Z}^\times$; in particular, the sign of D_L is well defined (as we shall see, the sign of D_L carries information about L). In the example above, the absolute discriminant is $D_L = -4$.

Like the different, the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then

$$S^{-1}D_{B/A} = D_{S^{-1}B/S^{-1}A}.$$

Proof. Let $x = s^{-1}\operatorname{disc}(e_1, \ldots, e_n) \in S^{-1}D_{B/A}$ for some $s \in S$ and $e_1, \ldots, e_n \in B$. Then $x = s^{2n-1}\operatorname{disc}(s^{-1}e_1, \ldots, s^{-1}e_n)$ lies in $D_{S^{-1}B/S^{-1}A}$. This proves the forward inclusion.

Conversely, for any $e_1, \ldots, e_n \in S^{-1}B$ we can choose a single $s \in S \subseteq A$ so that each se_i lies in B. We then have $\operatorname{disc}(e_1, \ldots, e_n) = s^{-2n} \operatorname{disc}(se_1, \ldots, se_n) \in S^{-1}D_{B/A}$, which proves the reverse inclusion.

Proposition 12.16. Assume AKLB and let \mathfrak{p} be a prime of A. Then

$$D_{B/A}\hat{A}_{\mathfrak{p}} = \prod_{\mathfrak{q}|\mathfrak{p}} D_{\hat{B}_{\mathfrak{q}}/\hat{A}_{\mathfrak{p}}}$$

where $\hat{A}_{\mathfrak{p}}$ and $\hat{B}_{\mathfrak{q}}$ are the completions of A and B at \mathfrak{p} and \mathfrak{q} , respectively.

Proof. After localizing at \mathfrak{p} we can assume A is a DVR and B is a free A-module of rank n. As in the proof of Proposition 12.4, we have a trace pairing on the finite étale $K_{\mathfrak{p}}$ -algebra $\hat{L} := L \otimes K_{\mathfrak{p}}$ and $\hat{B} := B \otimes \hat{A}_{\mathfrak{p}} \simeq \bigoplus_{\mathfrak{q} \mid \mathfrak{p}} \hat{B}_{\mathfrak{q}}$ is an $\hat{A}_{\mathfrak{p}}$ -lattice in the $K_{\mathfrak{p}}$ -vector space \hat{L} that is a direct sum of free $\hat{A}_{\mathfrak{p}}$ -modules, and thus a free $\hat{A}_{\mathfrak{p}}$ -module of rank $n = \sum e_{\mathfrak{q}} f_{\mathfrak{q}}$; see Corollary 11.26.

We can choose $\hat{A}_{\mathfrak{p}}$ bases for each $\hat{B}_{\mathfrak{q}}$ using elements in B; this follows from weak approximation (Theorem 8.5) and the fact that B is dense in $\hat{B}_{\mathfrak{q}}$ (or see [1, Thm. 2.3]). From these bases we can construct an $\hat{A}_{\mathfrak{p}}$ -basis \hat{e} for the direct sum $\bigoplus_{\mathfrak{q}|\mathfrak{p}} \hat{B}_{\mathfrak{q}} \simeq \hat{B}$ whose elements each have nonzero projections to exactly one of the $\hat{B}_{\mathfrak{q}}$, along with a corresponding A-basis e for B obtained from \hat{e} as the union of these projections.

The matrix $[T_{\hat{L}/K_{\mathfrak{p}}}(\hat{e}_{i}\hat{e}_{j})]$ is block diagonal; each block corresponds to a matrix whose determinant is the discriminant of the $\hat{A}_{\mathfrak{p}}$ -basis we chose for one of the $\hat{B}_{\mathfrak{q}}$. It follows that $D_{\hat{B}/\hat{A}_{\mathfrak{p}}} = \prod_{\mathfrak{q}|\mathfrak{p}} D_{\hat{B}_{\mathfrak{q}}/\hat{A}_{\mathfrak{p}}}$ (here we are using the fact that $\hat{B} \simeq \bigoplus_{\mathfrak{q}|\mathfrak{p}} \hat{B}_{\mathfrak{q}}$ is both an isomorphism of rings and an isomorphism of $A_{\mathfrak{p}}$ -modules, hence it preserves traces to $\hat{A}_{\mathfrak{p}}$). We now observe that

$$\operatorname{disc}_{B/A}(e_1,\ldots,e_n) = \operatorname{disc}_{(B\otimes A_{\mathfrak{p}})/\hat{A}_{\mathfrak{p}}}(e_1\otimes 1,\ldots,e_n\otimes 1)$$

generates $D_{B/A}$ as an A-ideal, and also generates $D_{\hat{B}/\hat{A}_{\mathfrak{p}}}$ as an $\hat{A}_{\mathfrak{p}}$ -ideal (note that \hat{B} is a free $\hat{A}_{\mathfrak{p}}$ -module, so $D_{B/\hat{A}_{\mathfrak{p}}}$ is the principal ideal generated by the discriminant of any $A_{\mathfrak{p}}$ -basis for \hat{B}). It follows that $D_{B/A}\hat{A}_{\mathfrak{p}} = D_{\hat{B}/\hat{A}_{\mathfrak{p}}} = \prod_{\mathfrak{q}|\mathfrak{p}} D_{\hat{B}_{\mathfrak{q}}/\hat{A}_{\mathfrak{p}}}$.

We have defined two different ideals associated to a finite separable extension of Dedekind domains B/A in the AKLB setup. We have the different $\mathcal{D}_{B/A}$, which is a fractional ideal of B, and the discriminant $D_{B/A}$, which is a fractional ideal of A. We now relate these two ideals in terms of the ideal norm $N_{B/A} \colon \mathcal{I}_B \to \mathcal{I}_A$, which for $I \in \mathcal{I}_B$ is defined as $N_{B/A}(I) := [B:I]_A$, where $[B:I]_A$ is the module index (see Definitions 6.1 and 6.5).

Theorem 12.17. Assume AKLB. Then $D_{B/A} = N_{B/A}(\mathcal{D}_{B/A})$.

Proof. The different and discriminant are both compatible with localization, by Propositions 12.3 and 12.15, and the A-modules $D_{B/A}$ and $N_{B/A}(\mathcal{D}_{B/A})$ of A are both determined by the intersections of their localizations at maximal ideals (Proposition 2.6), so it suffices to prove that the theorem holds when we replace A by its localization A at a prime of A. Then A is a DVR and B is a free A-lattice in L; let us fix an A-basis (e_1, \ldots, e_n) for B.

The dual A-lattice

$$B^* = \{x \in L : T_{L/K}(xb) \in A \ \forall b \in B\} \in \mathcal{I}_B$$

is also a free A-lattice in L, with basis (e_1^*, \ldots, e_n^*) uniquely determined by $T_{L/K}(e_i^*e_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta function; see Corollary 5.14. If we write $e_i = \sum a_{ij}e_j^*$ in terms of the K-basis (e_1^*, \ldots, e_n^*) for L then

$$T_{L/K}(e_i e_j) = T_{L/K} \left(\sum_k a_{ik} e_k^* e_j \right) = \sum_k a_{ik} T_{L/K}(e_k^* e_j) = \sum_k a_{ik} \delta_{kj} = a_{ij}.$$

It follows that $P := [T_{L/K}(e_i e_j)]_{ij}$ is the change-of-basis matrix from $e^* := (e_1^*, \dots, e_n^*)$ to $e := (e_1, \dots, e_n)$ (as row vectors we have $e = e^*P$). If we let ϕ denote the K-linear transformation with matrix P (or its transpose, if you prefer to work with column vectors), then ϕ is an isomorphism of free A-modules and

$$D_{B/A} = (\det[T_{L/K}(e_i e_j)]_{ij}) = (\det \phi) = [B^* : B]_A,$$

where $[B^*:B]_A$ is the module index (see Definition 6.1). Applying Corollary 6.8 yields

$$D_{B/A} = [B^* : B]_A = N_{B/A}((B : B^*)) = N_{B/A}((B^*)^{-1}) = N_{B/A}(\mathcal{D}_{B/A}).$$

(the last three equalities each hold by definition).

12.3 Ramification

Having defined the different and discriminant ideals we now want to understand how they relate to ramification. Recall that in our AKLB setup, if \mathfrak{p} is a prime of A then we can factor the B-ideal $\mathfrak{p}B$ as

$$\mathfrak{p}B=\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_r^{e_r}.$$

The Chinese remainder theorem implies

$$B/\mathfrak{p}B \simeq B/\mathfrak{q}_1^{e_1} \times \cdots \times B/\mathfrak{q}_r^{e_r}.$$

This is a commutative A/\mathfrak{p} -algebra of dimension $\sum e_i f_i$, where $f_i = [B/\mathfrak{q}_i : A/\mathfrak{p}]$ is the residue degree (see Theorem 5.34). It is a product of fields if and only if we have $e_i = 1$ for all i, and it is a finite étale-algebra if and only if it is a product of fields that are separable extensions of A/\mathfrak{p} . The following lemma relates the discriminant to the property of being a finite ètale algebra.

Lemma 12.18. Let k be a field and let R be a commutative k-algebra with k-basis r_1, \ldots, r_n . Then R is a finite étale k-algebra if and only if $\operatorname{disc}(r_1, \ldots, r_n) \neq 0$.

Proof. By Theorem 5.20, R is a finite étale k-algebra if and only if the trace pairing on R is a perfect pairing, which is equivalent to being nondegenerate, since k is a field.

If the trace pairing is degenerate then for some nonzero $x \in R$ we have $T_{R/k}(xy) = 0$ for all $y \in R$. If we write $x = \sum_i x_i r_i$ with $x_i \in k$ then $T_{R/k}(xr_j) = \sum_i x_i T_{R/k}(r_i r_j) = 0$ for all r_j (take $y = r_j$), and this implies that the columns of the matrix $[T_{R/k}(r_i r_j)]_{ij}$ are linearly dependent and $\operatorname{disc}(r_1, \ldots, r_n) = \det[T_{R/k}(r_i r_j)]_{ij} = 0$.

Conversely, if $\operatorname{disc}(r_1,\ldots,r_n)=0$ then the columns of $\det[\operatorname{T}_{R/k}(r_ir_j)]_{ij}$ are linearly dependent and for some $x_i\in k$ not identically zero we must have $\sum_i x_i\operatorname{T}_{R/k}(r_ir_j)=0$ for all j. For $x:=\sum_i x_ir_i$ and any $y=\sum_j y_jr_j\in R$ we have $\operatorname{T}_{R/k}(xy)=\sum_j y_j\sum_i x_i\operatorname{T}_{R/k}(r_ir_j)=0$, which shows that the trace pairing is degenerate.

Theorem 12.19. Assume AKLB, let \mathfrak{q} be a prime of B lying above a prime \mathfrak{p} of A such that B/\mathfrak{q} is a separable extension of A/\mathfrak{p} . The extension L/K is unramified at \mathfrak{q} if and only if \mathfrak{q} does not divide $\mathcal{D}_{B/A}$, and it is unramified at \mathfrak{p} if and only if \mathfrak{p} does not divide $D_{B/A}$.

Proof. We first consider the different $\mathcal{D}_{B/A}$. By Proposition 12.4, the different is compatible with completion, so it suffices to consider the case that A and B are complete DVRs (complete K at \mathfrak{p} and L at \mathfrak{q} and apply Theorem 11.23). We then have $[L:K]=e_{\mathfrak{q}}f_{\mathfrak{q}}$, where $e_{\mathfrak{q}}$ is the ramification index and $f_{\mathfrak{q}}$ is the residue field degree, and $\mathfrak{p}B=\mathfrak{q}^{e_{\mathfrak{q}}}$.

Since B is a DVR with maximal ideal \mathfrak{q} , we must have $\mathcal{D}_{B/A} = \mathfrak{q}^m$ for some $m \geq 0$. By Theorem 12.17 we have

$$D_{B/A} = N_{B/A}(\mathcal{D}_{B/A}) = N_{B/A}(\mathfrak{q}^m) = \mathfrak{p}^{f_{\mathfrak{q}}m}.$$

Thus $\mathfrak{q}|\mathcal{D}_{B/A}$ if and only if $\mathfrak{p}|D_{B/A}$. Since A is a PID, B is a free A-module and we may choose an A-module basis e_1, \ldots, e_n for B that is also a K-basis for L. Let $k := A/\mathfrak{p}$, and let \overline{e}_i be the reduction of e_i to the k-algebra $R := B/\mathfrak{p}B$. Then $(\overline{e}_1, \ldots, \overline{e}_n)$ is a k-basis for R: it clearly spans, and we have $[R:k] = [B/\mathfrak{q}^{e_q}:A/\mathfrak{p}] = e_{\mathfrak{q}}f_{\mathfrak{q}} = [L:K] = n$.

Since B has an A-module basis, we may compute its discriminant as

$$D_{B/A} = (\operatorname{disc}(e_1, \dots, e_n)).$$

Thus $\mathfrak{p}|D_{B/A}$ if and only if $\operatorname{disc}(e_1,\ldots,e_n)\in\mathfrak{p}$, equivalently, $\operatorname{disc}(\overline{e}_1,\ldots,\overline{e}_n)=0$ (note that $\operatorname{disc}(e_1,\ldots,e_n)$ is a polynomial in the $T_{L/K}(e_ie_j)$ and $T_{R/k}(\overline{e}_i\overline{e}_j)$ is the trace of the multiplication-by- $\overline{e}_i\overline{e}_j$ map, which is the same as the reduction to $k=A/\mathfrak{p}$ of the trace of the multiplication-by- e_ie_j map $T_{L/K}(e_ie_j)\in A$). By Lemma 12.18, $\operatorname{disc}(\overline{e}_1,\ldots,\overline{e}_n)=0$ if and only if the k-algebra $B/\mathfrak{p}B$ is not finite étale, equivalently, if and only if \mathfrak{p} is ramified. Thus $\mathfrak{p}|D_{B/A}$ if and only if \mathfrak{p} is ramified. There is only one prime \mathfrak{q} above \mathfrak{p} , so we also have $\mathfrak{q}|\mathcal{D}_{B/A}$ if and only if \mathfrak{q} is ramified.

We now note an important corollary of Theorem 12.19.

Corollary 12.20. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. A and B are Dedekind domains, so the ideals $D_{B/A}$ and $\mathcal{D}_{B/A}$ both have unique factorizations into prime ideals in which only finitely many primes appear.

12.4 The discriminant of an order

Recall from Lecture 6 that an order \mathcal{O} is a noetherian domain of dimension one whose conductor is nonzero (see Definitions 6.16 and 6.19), and the integral closure of an order is always a Dedekind domain. In our AKLB setup, the orders with integral closure B are precisely the A-lattices in L that are rings (see Proposition 6.22); if $L = K(\alpha)$ with $\alpha \in B$, then $A[\alpha]$ is an example. The discriminant $D_{\mathcal{O}/A}$ of such an order \mathcal{O} is its discriminant $D(\mathcal{O})$ as an A-module. The fact that $\mathcal{O} \subseteq B$ implies that $D(\mathcal{O}) \subseteq D_{B/A}$ is an A-ideal.

If \mathcal{O} is an order of the form $A[\alpha]$, where $\alpha \in B$ generates $L = K(\alpha)$ with minimal polynomial $f \in A[x]$, then \mathcal{O} is a free A-lattice with basis $1, \alpha, \ldots, \alpha^{n-1}$, where $n = \deg f$, and we may compute its discriminant as

$$D_{\mathcal{O}/A} = (\operatorname{disc}(1, \alpha, \dots, \alpha^{n-1})) = (\operatorname{disc}(f)),$$

which is a principal A-ideal contained in $D_{B/A}$. If B is also a free A-lattice, then as in the proof of Lemma 12.10 we have

$$D_{\mathcal{O}/A} = (\det P)^2 D_{B/A} = [B : \mathcal{O}]_A^2 D_{B/A},$$

where P is the matrix of the A-linear map $\phi \colon B \to \mathcal{O}$ that sends an A-basis for B to an A-basis for \mathcal{O} and $[B \colon \mathcal{O}]_A$ is the module index (a principal A-ideal).

In the important special case where $A = \mathbb{Z}$ and L is a number field, the integer $(\det P)^2$ is uniquely determined and it necessarily divides $\operatorname{disc}(f)$, the generator of the principal ideal $D(\mathcal{O}) = D(A[\alpha])$. It follows that if $\operatorname{disc}(f)$ is squarefree then we must have $B = \mathcal{O} = A[\alpha]$. More generally, any prime p for which $v_p(\operatorname{disc}(f))$ is odd must be ramified, and any prime that does not divide $\operatorname{disc}(f)$ must be unramified. Another useful observation that applies when $A = \mathbb{Z}$: the module index $[B:\mathcal{O}]_{\mathbb{Z}} = ([B:\mathcal{O}])$ is the principal ideal generated by the index of \mathcal{O} in B (as \mathbb{Z} -lattices), and we have the relation

$$D_{\mathcal{O}} = [B : \mathcal{O}]^2 D_B$$

between the absolute discriminant of the order \mathcal{O} and its integral closure B.

Example 12.21. Consider $A = \mathbb{Z}$, $K = \mathbb{Q}$ with $L = \mathbb{Q}(\alpha)$, where $\alpha^3 - \alpha - 1 = 0$. We can compute the absolute discriminant of $\mathbb{Z}[\alpha]$ as

$$\operatorname{disc}(1, \alpha, \alpha^2) = \operatorname{disc}(x^3 - x - 1) = -4(-1)^3 - 27(-1)^2 = -23.$$

The fact that -23 is squarefree immediately implies that 23 is the only prime of A that ramifies, and we have $D_{\mathbb{Z}[\alpha]} = -23 = [\mathcal{O}_L : \mathbb{Z}[\alpha]]^2 D_L$, which forces $[\mathcal{O}_L : \mathbb{Z}[\alpha]] = 1$, so $D_L = -23$ and $\mathcal{O}_L = \mathbb{Z}[\alpha]$.

More generally, we have the following theorem.

Theorem 12.22. Assume AKLB and let \mathcal{O} be an order with integral closure B and conductor \mathfrak{c} . Then $D_{\mathcal{O}/A} = N_{B/A}(\mathfrak{c})D_{B/A}$.

Proof. See Problem Set 6.
$$\Box$$

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant and different in many cases.

Proposition 12.23. Assume AKLB. If $B = A[\alpha]$ for some $\alpha \in L$ and $f \in A[x]$ is the minimal polynomial of α , then

$$\mathcal{D}_{B/A} = (f'(\alpha))$$

is the B-ideal generated by $f'(\alpha)$.

Proof. See Problem Set 6.

The assumption $B = A[\alpha]$ in Proposition 12.23 does not always hold, but if we want to compute the power of \mathfrak{q} that divides $\mathcal{D}_{B/A}$ we can complete L at \mathfrak{q} and K at $\mathfrak{p} = \mathfrak{q} \cap A$ so that A and B become complete DVRs, in which case $B = A[\alpha]$ does hold (by Lemma 10.14), so long as the residue field extension is separable (always true if K and L are global fields, since the residue fields are then finite, hence perfect). The following definition and proposition give an alternative approach.

Definition 12.24. Assume AKLB and let $\alpha \in B$ have minimal polynomial $f \in A[x]$. The different of α is defined by

$$\delta_{B/A}(\alpha) := \begin{cases} f'(\alpha) & \text{if } L = K(\alpha), \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 12.25. Assume AKLB. Then $\mathcal{D}_{B/A} = (\delta_{B/A}(\alpha) : \alpha \in B)$.

Proof. See
$$[3, Thm. III.2.5]$$
.

We can now more precisely characterize the ramification information given by the different ideal.

Theorem 12.26. Assume AKLB and let \mathfrak{q} be a prime of L lying above $\mathfrak{p} = \mathfrak{q} \cap A$ for which the residue field extension $(B/\mathfrak{q})/(A/\mathfrak{p})$ is separable. Then

$$e_{\mathfrak{q}} - 1 \le v_{\mathfrak{q}}(\mathcal{D}_{B/A}) \le e_{\mathfrak{q}} - 1 + v_{\mathfrak{q}}(e_{\mathfrak{q}}),$$

and the lower bound is an equality if and only if \mathfrak{q} is tamely ramified.

Proof. See Problem Set 6.

We also note the following proposition, which shows how the discriminant and different behave in a tower of extensions.

Proposition 12.27. Assume AKLB and let M/L be a finite separable extension and let C be the integral closure of A in M. Then

$$\mathcal{D}_{C/A} = \mathcal{D}_{C/B} \cdot \mathcal{D}_{B/A}$$

(where the product on the right is taken in C), and

$$D_{C/A} = (D_{B/A})^{[M:L]} N_{B/A} (D_{C/B}).$$

Proof. See [4, Prop. III.8].

If M/L/K is a tower of finite separable extensions, we note that the primes \mathfrak{p} of K that ramify are precisely those that divide either $D_{L/K}$ or $N_{L/K}(D_{M/L})$.

References

- [1] A. Jakhar, B. Jhorar, S. K. Khanduja, N. Sangwan, *Discriminant as a product of local discriminant*, J. Algebra App. **16** (2017), 1750198 (7 pages).
- [2] S. Lang, *Algebra*, third edition, Springer, 2002.
- [3] J. Neukirch, Algebraic number theory, Springer, 1999.
- [4] J.-P. Serre, *Local fields*, Springer, 1979.
- [5] Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.