Problem 0.

These are warm up questions that do not need to be turned in.

(a) Prove that the absolute discriminant of a number field is always a square mod 4.
(b) Compute the different ideal of the quadratic extensions $\mathbb{Q}(\sqrt{-2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$.
(c) Determine all the primes that ramify in the cubic fields $\mathbb{Q}[x]/(x^3 - x - 1)$ and $\mathbb{Q}[x]/(x^3 + x + 1)$ and compute their ramification indices.
(d) Let p be an odd prime. Compute the different ideal and absolute discriminant of the cyclotomic extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$.

Problem 1 The different ideal (64 points)

Let A be a Dedekind domain with fraction field K, let L/K be a finite separable extension, and let B be the integral closure of A in L. Write $L = K(\alpha)$ with $\alpha \in B$ and let $f \in A[x]$ be the minimal polynomial of α, with degree $n = [L : K]$.

(a) By comparing the Laurent series expansion of $1/f(x)$ with its partial fraction decomposition over the splitting field of f (the Galois closure of L), prove that

$$T_{L/K} \left(\frac{\alpha^i}{f'(\alpha)} \right) = \begin{cases} 0 & \text{if } 0 \leq i \leq n - 2; \\ 1 & \text{if } i = n - 1; \\ \in A & \text{if } i \geq n.
\end{cases}$$

(b) Suppose $B = A[\alpha]$. Prove that $B^* := \{x \in L : T_{L/K}(xb) \in A \text{ for all } b \in B\}$ is the principal fractional B-ideal $(1/f'(\alpha))$. Conclude that $D_{B/A} = (f'(\alpha))$.

(c) For any $\beta \in B$ with minimal polynomial $g \in A[x]$ define

$$\delta_{B/A}(\beta) = \begin{cases} g'(\beta) & \text{if } L = K(\beta); \\ 0 & \text{otherwise.} \end{cases}$$
One can show that \(D_{B/A} \) is the \(B \)-ideal generated by \(\{ \delta_{B/A}(\beta) : \beta \in B \} \) (you are not required to prove this). Prove that if \(g \) is the minimal polynomial of \(\beta \in B \) for which \(L = K(\beta) \) then \(N_{B/A}(g'(\beta)) = \pm \text{disc}(g) \).

(d) Prove or disprove: \(D_{B/A} \) is the \(A \)-ideal generated by \(\{ N_{B/A}(\delta_{B/A}(\beta)) : \beta \in B \} \).

(e) Let \(c \) be the conductor of the order \(C = A[\alpha] \). Prove that

\[
 c = (B^* : C^*) := \{ x \in L : xC^* \subseteq B^* \}.
\]

Conclude that if we define \(D_{C/A} := (B : C^*) \) and \(D_{C/A} := D(C) \) then we have \(D_{C/A} = cD_{B/A} \) and \(D_{C/A} = N_{B/A}(c)D_{B/A} \), so that \(D_{C/A} = N_{B/A}(D_{C/A}) \).

(f) Let \(q \) be a prime of \(B \) lying above a prime \(p \) of \(A \) and suppose the corresponding residue field extension is separable. Prove that \(v_q(D_{B/A}) \geq e_q - 1 \) with equality if and only if \(B/A \) is tamely ramified at \(q \).

(g) Let \(p \) and \(q \) be distinct primes congruent to 1 mod 4, let \(K := \mathbb{Q}(\sqrt{pq}) \), and let \(L := \mathbb{Q}(\sqrt{p}, \sqrt{q}) \). Prove that \(D_{L/K} \) is the unit ideal (so \(L/K \) is unramified).

Problem 2. Valuation rings (64 points)

An ordered abelian group is an abelian group \(\Gamma \) with a total order \(\leq \) that is compatible with the group operation. This means that for all \(a, b, c \in \Gamma \) the following hold:

\[
\begin{align*}
 a \leq b \leq a & \implies a = b \quad \text{(antisymmetry)} \\
 a \leq b \leq c & \implies a \leq c \quad \text{(transitivity)} \\
 a \not\leq b & \implies b \leq a \quad \text{(totality)} \\
 a \leq b & \implies a + c \leq b + c \quad \text{(compatibility)}
\end{align*}
\]

Note that totality implies reflexivity \((a \leq a)\). Given an ordered abelian group \(\Gamma \), we define the relations \(\geq, <, > \) and the sets \(\Gamma_{\leq 0}, \Gamma_{> 0}, \Gamma_{< 0}, \Gamma_{\geq 0} \) in the obvious way.

A valuation \(v \) on a field \(K \) is a surjective homomorphism \(v : K^\times \to \Gamma \) to an ordered abelian group \(\Gamma \) that satisfies \(v(x + y) \geq \min(v(x), v(y)) \) for all \(x, y \in K^\times \). The group \(\Gamma \) is called the value group of \(v \), and when \(\Gamma = \{ 0 \} \) we say that \(v \) is the trivial valuation. We may extend \(v \) to \(K \) by defining \(v(0) = \infty \), where \(\infty \) is defined to be strictly greater than any element of \(\Gamma \).

Recall that a valuation ring is an integral domain \(A \) with fraction field \(K \) such that for all \(x \in K^\times \) either \(x \in A \) or \(x^{-1} \in A \) (possibly both).

(a) Let \(A \) be a valuation ring with fraction field \(K \), and let \(v : K^\times \to K^\times/A^\times = \Gamma \) be the quotient map. Show that the relation \(\leq \) on \(\Gamma \) defined by

\[
 v(x) \leq v(y) \iff y/x \in A,
\]

makes \(\Gamma \) an ordered abelian group and that \(v \) is a valuation on \(K \).

(b) Let \(K \) be a field with a non-trivial valuation \(v : K^\times \to \Gamma \). Prove that the set

\[
 A := \{ x \in K : v(x) \geq 0 \}
\]

is a valuation ring with fraction field \(K \) and that \(v(x) \leq v(y) \iff y/x \in A \).
(c) Let Γ be an ordered abelian group and let k be a field. For each $a \in \Gamma_{\geq 0}$, let x^a be a formal symbol, and define multiplication of these symbols via $x^a x^b := x^{a+b}$. Let A be the k-algebra whose elements are formal sums $\sum_{a \in I} c_a x^a$, where $c_a \in k$ and the index set $I \subseteq \Gamma_{\geq 0}$ is well ordered (every subset has a minimal element). Let K be the fraction field of A and define $v: K^\times \to \Gamma$ by

$$v \left(\frac{\sum c_a x^a}{\sum d_a x^a} \right) = \min \{a : c_a \neq 0\} - \min \{a : d_a \neq 0\}.$$

Prove that v is a valuation on K with value group Γ and valuation ring A.

(d) Let $v: K^\times \to \Gamma_v$ and $w: K^\times \to \Gamma_w$ be two valuations on a field K, and let A_v and A_w be the corresponding valuation rings. Prove that $A_v = A_w$ if and only if there is an order preserving isomorphism $\rho: \Gamma_v \to \Gamma_w$ for which $\rho \circ v = w$, in which case we say that v and w are equivalent. Thus there is a 1-to-1 correspondence between valuation rings with fraction field K and equivalence classes of valuations on K.

(e) Let A be an integral domain properly contained in its fraction field K, and let R be the set of local rings that contain A and are properly contained in K. Partially order R by writing $R_1 \leq R_2$ if $R_1 \subseteq R_2$ and the maximal ideal of R_1 is contained in the maximal ideal of R_2 (this is known as the dominance ordering). Prove that R contains a maximal element R and that every such R is a valuation ring.

(f) Prove that every valuation ring is local and integrally closed, and that the intersection of all valuation rings that contain an integral domain A and lie in its fraction field is equal to the integral closure of A.

(g) Prove that a valuation ring that is not a field is a discrete valuation ring if and only if it is noetherian.

Problem 3. Norm maps of local fields (32 points)

Let A be the valuation ring of a nonarchimedean local field K, let L be a tamely ramified extension of K, and let B be the integral closure of A in L. The goal of this problem is to prove that the extension L/K is unramified if and only if the norm map restricts to a surjective map of unit groups, equivalently, $N_{L/K}(B^\times) = A^\times$. Let \mathfrak{p} and \mathfrak{q} be the maximal ideals of A and B and let $k := A/\mathfrak{p}$ and $l := B/\mathfrak{q}$ be the residue fields.

(a) Prove that we always have $N_{L/K}(B^\times) \subseteq A^\times$ and $N_{l/k}(l^\times) = k^\times$ and $T_{l/k}(l) = k$.

(b) For $i \geq 0$ define $U_i := 1 + \mathfrak{p}^i := \{1 + a : a \in \mathfrak{p}^i\}$. Show that the U_i are distinct closed subgroups of A^\times that form a base of neighborhoods $1 \in A^\times$ (this means every open neighborhood of 1 in the topological group A^\times contains some U_i).

(c) Prove that if L/K is ramified then the norm of every $b \in B^\times$ lies in a coset of U_1 of the form $u^n + U_1$ with $n := [L : K] > 1$. Show that these cosets do not cover A^\times and therefore $N_{L/K}(B^\times) = A^\times$ can hold only if L/K is unramified.

(d) Assume L/K is unramified. Show that for every $u \in A^\times$ there exists $\alpha_0 \in B^\times$ with $N_{L/K}(\alpha_0) \equiv u \mod \mathfrak{p}$. Then construct $\alpha_1 \in B^\times$ with $N_{L/K}(\alpha_0 \alpha_1) \equiv u \mod \mathfrak{p}$. Continuing in this fashion, construct $\alpha \in B^\times$ such that $N_{L/K}(\alpha) = u$.

4 If Γ is well ordered you may fix $I = \Gamma$ but in general I will vary from sum to sum; alternatively, index by Γ but require the indices of the nonzero coefficients to form a well-ordered subset of Γ.
Problem 4. Minkowski’s lemma and sums of four squares (32 points)

Minkowski’s lemma (for \mathbb{Z}^n) states that if $S \subseteq \mathbb{R}^n$ is a symmetric convex set of volume $\mu(S) > 2^n$ then S contains a nonzero element of \mathbb{Z}^n.

Here symmetric means that S is closed under negation, and convex means that for all $x, y \in S$ the set $\{tx + (1 - t)y : t \in [0, 1]\}$ lies in S.

(a) Prove that for any measurable $S \subseteq \mathbb{R}^n$ with measure $\mu(S) > 1$ there exist distinct $s, t \in S$ such that $s - t \in \mathbb{Z}^n$, then prove Minkowski’s lemma.

(b) Prove that Minkowski’s lemma is tight in the following sense: show that is is false if either of the words “symmetric” or “convex” is removed, or if the strict inequality $\mu(S) > 2^n$ is weakened to $\mu(S) \geq 2^n$ (give three explicit counter examples).

(c) Prove that one can weaken the inequality $\mu(S) > 2^n$ in Minkowski’s lemma to $\mu(S) \geq 2^n$ if S is assumed to be compact.

You will now use Minkowski’s lemma to prove a theorem of Lagrange, which states that every positive integer is a sum of four integer squares. Let p be an odd prime.

(d) Show that $x^2 + y^2 = a$ has a solution (m, n) in \mathbb{F}_p^2 for every $a \in \mathbb{F}_p$.

(e) Let V be the \mathbb{F}_p-span of $\{(m, n, 1, 0), (-n, m, 0, 1)\}$ in \mathbb{F}_p^4, where $m^2 + n^2 = -1$. Prove that V is isotropic, meaning that $v_1^2 + v_2^2 + v_3^2 + v_4^2 = 0$ for all $v \in V$.

(f) Use Minkowski’s lemma to prove that p is a sum of four squares.

(g) Prove that every positive integer is the sum of four squares.

Problem 5. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem to the nearest half hour.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please rate each of the following lectures that you attended, according to the quality of the material (1 = “useless”, 10 = “fascinating”), the quality of the presentation (1 = “epic fail”, 10 = “perfection”), the pace (1 = “way too slow”, 10 = “way too fast”, 5 = “just right”) and the novelty of the material to you (1 = “old hat”, 10 = “all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/18</td>
<td>Different and discriminant ideals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/23</td>
<td>Haar measure, product formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.