10 Extensions of complete DVRs

Recall that in our AKLB setup, A is a Dedekind domain with fraction field K, the field L is a finite separable extension of K, and B is the integral closure of A in L; as we proved in Theorem 5.22, this implies that B is also a Dedekind domain (with L as its fraction field). We now want to consider the special case where A is a complete DVR; in this case B is also a complete DVR, but this will take a little bit of work to prove. We first show that B is a DVR.

Theorem 10.1. Assume AKLB and that A is a complete DVR with maximal ideal \mathfrak{p} . Then B is a DVR whose maximal ideal \mathfrak{q} is necessarily the unique prime above \mathfrak{p} .

Proof. We first show that $\#\{\mathfrak{q}|\mathfrak{p}\}=1$. At least one prime \mathfrak{q} of B lies above \mathfrak{p} , since the factorization of $\mathfrak{p}B \subsetneq B$ is non-trivial. Now suppose for the sake of contradiction that $\mathfrak{q}_1,\mathfrak{q}_2 \in \{\mathfrak{q}|\mathfrak{p}\}$ with $\mathfrak{q}_1 \neq \mathfrak{q}_2$. Choose $b \in \mathfrak{q}_1 - \mathfrak{q}_2$ and consider the ring $A[b] \subseteq B$. The ideals $\mathfrak{q}_1 \cap A[b]$ and $\mathfrak{q}_2 \cap A[b]$ are distinct prime ideals of A[b] containing $\mathfrak{p}A[b]$, and both are maximal, since they are nonzero and dim $A[b] = \dim A = 1$ (note that $A[b] \subseteq B$ is integral over A and therefore has the same dimension). The quotient ring $A[b]/\mathfrak{p}A[b]$ thus has at least two maximal ideals. Let $f \in A[x]$ be the minimal polynomial of b over K, and let $\bar{f} \in k[x]$ be its reduction to the residue field A/\mathfrak{p} . We have

$$\frac{(A/\mathfrak{p})[x]}{(\bar{f})} \simeq \frac{A[x]}{(\mathfrak{p},f)} \simeq \frac{A[b]}{\mathfrak{p}A[b]},$$

thus the ring $(A/\mathfrak{p})[x]/(\bar{f})$ has at least two maximal ideals, which implies that \bar{f} is divisible by two distinct irreducible polynomials (because $(A/\mathfrak{p})[x]$ is a PID). We can thus factor $\bar{f} = \bar{g}\bar{h}$ with \bar{g} and \bar{h} coprime. By Hensel's Lemma 9.19, we can lift this to a non-trivial factorization f = gh of f in A[x], contradicting the irreducibility of f.

Every maximal ideal of B lies above a maximal ideal of A, but A has only the maximal ideal \mathfrak{p} and $\#\{\mathfrak{q}|\mathfrak{p}\}=1$, so B has a unique (nonzero) maximal ideal \mathfrak{q} . Thus B is a local Dedekind domain, hence a local PID, and not a field, so B is a DVR, by Theorem 1.15. \square

Remark 10.2. The assumption that A is complete is necessary. For example, if A is the DVR $\mathbb{Z}_{(5)}$ with fraction field $K = \mathbb{Q}$ and we take $L = \mathbb{Q}(i)$, then the integral closure of A in L is $B = \mathbb{Z}_{(5)}[i]$, which is a PID but not a DVR: the ideals (1+2i) and (1-2i) are both maximal (and not equal). But if we take completions we get $A = \mathbb{Z}_5$ and $K = \mathbb{Q}_5$, and now $L = \mathbb{Q}_5(i) = \mathbb{Q}_5 = K$, since $x^2 + 1$ has a root in $\mathbb{F}_5 \simeq \mathbb{Z}_5/5\mathbb{Z}_5$ that we can lift to \mathbb{Z}_5 via Hensel's lemma; thus if we complete A then B = A is a DVR as required.

Definition 10.3. Let K be a field with absolute value $| \ |$ and let V be a K-vector space. A *norm* on V is a function $|| \ || : V \to \mathbb{R}_{\geq 0}$ such that

- ||v|| = 0 if and only if v = 0.
- $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in K$ and $v \in V$.
- $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Each norm $\| \|$ induces a topology on V via the distance metric $d(v, w) := \|v - w\|$.

Example 10.4. Let V be a K-vector space with basis (e_i) , and for $v \in V$ let $v_i \in K$ denote the coefficient of e_i in $v = \sum_i v_i e_i$. The $\sup\{|v_i|\}$ is a norm on V (so

every vector space has at least one norm). If V is also a K-algebra, an absolute value $\| \|$ on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute value on K (fix $v \neq 0$ and note that $\|\lambda\| \|v\| = \|\lambda v\| = |\lambda| \|v\| \Leftrightarrow \|\lambda\| = |\lambda|$).

Proposition 10.5. Let V be a vector space of finite dimension over a complete field K. Every norm on V induces the same topology, in which V is a complete metric space.

Proof. See Problem Set 5. \Box

Theorem 10.6. Let A be a complete DVR with fraction field K, maximal ideal \mathfrak{p} , discrete valuation $v_{\mathfrak{p}}$, and absolute value $|x|_{\mathfrak{p}} := c^{v_{\mathfrak{p}}(x)}$, with 0 < c < 1. Let L/K be a finite extension of degree n. The following hold.

- $\text{(i)} \ \ \textit{There is a unique absolute value} \ |x| := |\mathrm{N}_{L/K}(x)|_{\mathfrak{p}}^{1/n} \ \ \textit{on L that extends} \ | \ \ |_{\mathfrak{p}};$
- (ii) The field L is complete with respect to $| \ |$, and its valuation ring $\{x \in L : |x| \le 1\}$ is equal to the integral closure B of A in L;
- (iii) If L/K is separable then B is a complete DVR whose maximal ideal $\mathfrak q$ induces

$$|x| = |x|_{\mathfrak{q}} := c^{\frac{1}{e_{\mathfrak{q}}}v_{\mathfrak{q}}(x)},$$

where $e_{\mathfrak{q}}$ is the ramification index of \mathfrak{q} , that is, $\mathfrak{p}B = \mathfrak{q}^{e_{\mathfrak{q}}}$.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!), for any $x \in K$ we have

$$|x| = |\mathcal{N}_{L/K}(x)|_{\mathfrak{p}}^{1/n} = |x^n|_{\mathfrak{p}}^{1/n} = |x|_{\mathfrak{p}},$$

so | | extends $| |_{\mathfrak{p}}$ and is therefore a norm on L. The fact that $| |_{\mathfrak{p}}$ is nontrivial means that $| x |_{\mathfrak{p}} \neq 1$ for some $x \in K^{\times}$, and $| x |^a = | x |_{\mathfrak{p}} = | x |$ only for a = 1, which implies that $| | |_{\mathfrak{p}}$ is the unique absolute value in its equivalence class extending $| |_{\mathfrak{p}}$. Every norm on L induces the same topology (by Proposition 10.5), so $| |_{\mathfrak{p}}$ is the only absolute value on L that extends $| |_{\mathfrak{p}}$.

We now show $|\cdot|$ is an absolute value. Clearly $|x| = 0 \Leftrightarrow x = 0$ and $|\cdot|$ is multiplicative; we only need to check the triangle inequality. It suffices to show $|x| \le 1 \Rightarrow |x+1| \le |x|+1$, since we always have |y+z| = |z||y/z+1| and |y|+|z| = |z|(|y/z|+1), and without loss of generality we assume $|y| \le |z|$. In fact the stronger implication $|x| \le 1 \Rightarrow |x+1| \le 1$ holds:

$$|x| \leq 1 \iff |\mathcal{N}_{L/K}(x)|_{\mathfrak{p}} \leq 1 \iff N_{L/K}(x) \in A \iff x \in B \iff x+1 \in B \iff |x+1| \leq 1.$$

The first biconditional follows from the definition of | |, the second follows from the definition of | |, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first three after replacing x with x + 1. This completes the proof of (i), and also proves (ii).

We now assume L/K is separable. Then B is a DVR, by Theorem 10.1, and it is complete because it is the valuation ring of L. Let \mathfrak{q} be the unique maximal ideal of B. The valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, by Theorem 8.20, so $v_{\mathfrak{q}}(x) = e_{\mathfrak{q}}v_{\mathfrak{p}}(x)$ for $x \in K^{\times}$. We have $0 < c^{1/e_{\mathfrak{q}}} < 1$, so $|x|_{\mathfrak{q}} := (c^{1/e_{\mathfrak{q}}})^{v_{\mathfrak{q}}(x)}$ is an absolute value on L induced by $v_{\mathfrak{q}}$. To show it is equal to $|\cdot|$, it suffices to show that it extends $|\cdot|_{\mathfrak{p}}$, since we already know that $|\cdot|$ is the unique absolute value on L with this property. For $x \in K^{\times}$ we have

$$|x|_{\mathfrak{q}} = c^{\frac{1}{e_{\mathfrak{q}}}v_{\mathfrak{q}}(x)} = c^{\frac{1}{e_{\mathfrak{q}}}e_{\mathfrak{q}}v_{\mathfrak{p}}(x)} = c^{v_{\mathfrak{p}}(x)} = |x|_{\mathfrak{p}},$$

and the theorem follows.

Remark 10.7. The transitivity of $N_{L/K}$ in towers (Corollary 4.52) implies that we can uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic closure \overline{K} . In fact, this is another form of Hensel's lemma in the following sense: one can show that a (not necessarily discrete) valuation ring K is Henselian if and only if the absolute value of its fraction field K can be uniquely extended to \overline{K} ; see [4, Theorem 6.6].

Corollary 10.8. Assume AKLB and that A is a complete DVR with maximal ideal \mathfrak{p} and let $\mathfrak{q}|\mathfrak{p}$. Then $v_{\mathfrak{q}}(x) = \frac{1}{f_0}v_{\mathfrak{p}}(N_{L/K}(x))$ for all $x \in L$.

Proof.
$$v_{\mathfrak{p}}(N_{L/K}(x)) = v_{\mathfrak{p}}(N_{L/K}((x))) = v_{\mathfrak{p}}(N_{L/K}(\mathfrak{q}^{v_{\mathfrak{q}}(x)})) = v_{\mathfrak{p}}(\mathfrak{p}^{f_{\mathfrak{q}}v_{\mathfrak{q}}(x)}) = f_{\mathfrak{q}}v_{\mathfrak{q}}(x).$$

Remark 10.9. One can generalize the notion of a discrete valuation to a valuation, a surjective homomorphism $v \colon K^{\times} \to \Gamma$, in which Γ is a (totally) ordered abelian group and $v(x+y) \geq \min(v(x),v(y))$; we extend v to K by defining $v(0) = \infty$ to be strictly greater than any element of Γ . In the AKLB setup with A a complete DVR, one can then define a valuation $v(x) = \frac{1}{e_q}v_q(x)$ with image $\frac{1}{e_q}\mathbb{Z}$ that restricts to the discrete valuation v_p on K. The valuation v then extends to a valuation on \overline{K} with $\Gamma = \mathbb{Q}$. Some texts take this approach, but we will generally stick with discrete valuations (so our absolute value on L restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K, they extend them with index e_q).

Remark 10.10. Recall that a valuation ring is an integral domain A with fraction field K such that for every $x \in K^{\times}$ either $x \in A$ or $x^{-1} \in A$ (possibly both). As you will show on Problem Set 6, if A is a valuation ring, then there exists a valuation $v: K \to \Gamma \cup \{\infty\}$ for some totally ordered abelian group Γ such that $A = \{x \in K : v(x) \geq 0\}$ is the valuation ring of K with respect to this valuation.

In our AKLB setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal $\mathfrak{q}|\mathfrak{p}$ and the formula $[L:K] = \sum_{p|q} e_{\mathfrak{q}} f_{\mathfrak{q}}$ given by Theorem 5.32 has only one term $e_{\mathfrak{q}} f_{\mathfrak{q}}$. We now simplify matters even further by reducing to the two extreme cases $f_{\mathfrak{q}} = 1$ (a totally ramified extension) and $e_{\mathfrak{q}} = 1$ (an unramified extension, provided that the residue field extension is separable).

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in our AKLB setting by factoring polynomials over the residue field, provided that B is monogenic (of the form $A[\alpha]$ for some $\alpha \in B$), or the prime of interest does not contain the conductor. We now show that in the special case where A and B are DVRs and the residue field extension is separable, B is always monogenic; this holds, for example, whenever K is a local field. To prove this, we first recall a form of Nakayama's lemma.

Lemma 10.11 (NAKAYAMA'S LEMMA). Let A be a local ring with maximal ideal \mathfrak{p} , and let M be a finitely generated A-module. If the images of $x_1, \ldots, x_n \in M$ generate $M/\mathfrak{p}M$ as an (A/\mathfrak{p}) -vector space then x_1, \ldots, x_n generate M as an A-module.

Proof. See [1, Corollary 4.8b].
$$\Box$$

¹Recall from Definition 5.34 that separability of the residue field extension is part of the *definition* of an unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field extension is automatically separable, but in general it need not be, even when L/K is unramified.

Before proving our theorem on local monogenicity, we record a few corollaries of Nakayama's Lemma that will be useful later.

Corollary 10.12. Let A be a local noetherian ring with maximal ideal \mathfrak{p} , let $g \in A[x]$, and let B := A[x]/(g(x)). Every maximal ideal \mathfrak{m} of B contains the ideal $\mathfrak{p}B$.

Proof. Suppose not. Then $\mathfrak{m}+\mathfrak{p}B=B$ for some maximal ideal \mathfrak{m} of B. The ring B is finitely generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules are all finitely generated. Let z_1,\ldots,z_n be A-module generators for \mathfrak{m} . Every coset of $\mathfrak{p}B$ in B can be written as $z+\mathfrak{p}B$ for some A-linear combination z of z_1,\ldots,z_n , so the images of z_1,\ldots,z_n generate $B/\mathfrak{p}B$ as an (A/\mathfrak{p}) -vector space. By Nakayama's lemma, z_1,\ldots,z_n generate B, in which case $\mathfrak{m}=B$, a contradiction.

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem that does not even require A and B to be Dedekind domains.

Corollary 10.13. Let A be a local noetherian ring with maximal ideal \mathfrak{p} , let $g \in A[x]$ be a polynomial with reduction $\bar{g} \in (A/\mathfrak{p})[x]$, and let α be the image of x in the ring $B := A[x]/(g(x)) = A[\alpha]$. The maximal ideals of B are $(\mathfrak{p}, g_i(\alpha))$, where $g_1, \ldots, g_m \in A[x]$ are lifts of the distinct irreducible polynomials $\bar{g}_i \in (A/\mathfrak{p})[x]$ that divide \bar{g} .

Proof. By Corollary 10.12, the quotient map $B \to B/\mathfrak{p}B$ gives a one-to-one correspondence between maximal ideals of B and maximal ideals of $B/\mathfrak{p}B$, and we have

$$\frac{B}{\mathfrak{p}B} \simeq \frac{A[x]}{(\mathfrak{p},g(x))} \simeq \frac{(A/\mathfrak{p})[x]}{(\bar{g}(x))}.$$

Each maximal ideal of $(A/\mathfrak{p})[x]/(\bar{g}(x))$ is the reduction of an irreducible divisor of \bar{g} , hence one of the \bar{g}_i (because $(A/\mathfrak{p})[x]$ is a PID). The corollary follows.

Theorem 10.14. Assume AKLB, with A and B DVRs with residue fields $k := A/\mathfrak{p}$ and $l := B/\mathfrak{q}$. If l/k is separable then $B = A[\alpha]$ for some $\alpha \in B$; if L/K is unramified this holds for any $\alpha \in B$ whose image generates the residue field extension l/k.

Proof. Let $\mathfrak{p}B = \mathfrak{q}^e$ be the factorization of $\mathfrak{p}B$ and let f = [l:k] be the residue field degree, so that ef = n := [L:K]. The extension l/k is separable, so we may apply the primitive element theorem to write $l = k(\alpha_0)$ for some $\alpha_0 \in l$ whose minimal polynomial \bar{g} is separable of degree equal to f. Let $g \in A[x]$ be a monic lift of \bar{g} , and let α_0 be any lift of $\bar{\alpha}_0$ to B. It $v_{\mathfrak{q}}(g(\alpha_0)) = 1$ then let $\alpha := \alpha_0$. Otherwise, let π_0 be any uniformizer for B and let $\alpha := \alpha_0 + \pi_0 \in B$ (so $\alpha \equiv \bar{\alpha}_0 \mod \mathfrak{q}$) Writing $g(x + \pi_0) = g(x) + \pi_0 g'(x) + \pi_0^2 h(x)$ for some $h \in A[x]$ via Lemma 9.11, we have

$$v_{\mathfrak{q}}(g(\alpha)) = v_{\mathfrak{q}}(g(\alpha_0 + \pi_0)) = v_{\mathfrak{q}}(g(\alpha_0) + \pi_0 g'(\alpha_0) + \pi_0^2 h(\alpha_0)) = 1,$$

so $\pi := g(\alpha)$ is also a uniformizer for B.

We now claim $B = A[\alpha]$, equivalently, that $1, \alpha, \ldots, \alpha^{n-1}$ generate B as an A-module. By Nakayama's lemma, it suffices to show that the reductions of $1, \alpha, \ldots, \alpha^{n-1}$ span $B/\mathfrak{p}B$ as an k-vector space. We have $\mathfrak{p} = \mathfrak{q}^e$, so $\mathfrak{p}B = (\pi^e)$. We can represent each element of $B/\mathfrak{p}B$ as a coset

$$b + \mathfrak{p}B = b_0 + b_1\pi + b_2\pi \cdots + b_{e-1}\pi^{e-1} + \mathfrak{p}B,$$

where b_0, \ldots, b_{e-1} are determined up to equivalence modulo πB . Now $1, \bar{\alpha}, \ldots, \bar{\alpha}^{f-1}$ are a basis for $B/\pi B = B/\mathfrak{q}$ as a k-vector space, and $\pi = g(\alpha)$, so we can rewrite this as

$$b + \mathfrak{p}B = (a_0 + a_1\alpha + \dots + a_{f-1}\alpha^{f-1})$$

$$+ (a_f + a_{f+1}\alpha + \dots + a_{2f-1}\alpha^{f-1})g(\alpha)$$

$$+ \dots$$

$$+ (a_{ef-f+1} + a_{ef-f+2}\alpha + \dots + a_{ef-1}\alpha^{f-1})g(\alpha)^{e-1} + \mathfrak{p}B.$$

Since deg g = f, and n = ef, this expresses $b + \mathfrak{p}B$ in the form $b' + \mathfrak{p}B$ with b' in the A-span of $1, \ldots, \alpha^{n-1}$. Thus $B = A[\alpha]$.

We now note that if L/K is unramified then l/k is separable (this is part of the definition of unramified), and e=1, f=n, in which case there is no need to require $g(\alpha)$ to be a uniformizer and we can just take $\alpha=\alpha_0$ to be any lift of any $\bar{\alpha}_0$ that generates l over k. \square

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite unramified extension of L/K of degree n is a corresponding finite separable extension of residue fields l/k of the same degree n. Given that the extensions L/K and l/k are finite separable extensions of the same degree, we might wonder how they are related. More precisely, if we fix K with residue field k, what is the relationship between finite unramified extensions L/K of degree n and finite separable extensions l/k of degree n? Each L/K uniquely determines a corresponding l/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K form a category $\mathcal{C}_K^{\text{unr}}$ whose morphisms are K-algebra homomorphisms, and the finite separable extensions l of k form a category $\mathcal{C}_k^{\text{sep}}$ whose morphisms are k-algebra homomorphisms. These two categories are equivalent.

Theorem 10.15. Let A be a complete DVR with fraction field K and residue field $k := A/\mathfrak{p}$. The categories $\mathcal{C}_K^{\text{unr}}$ and $\mathcal{C}_k^{\text{sep}}$ are equivalent via the functor $\mathcal{F} \colon \mathcal{C}_K^{\text{unr}} \to \mathcal{C}_k^{\text{sep}}$ that sends each unramified extension L of K to its residue field l, and each K-algebra homomorphism $\varphi \colon L_1 \to L_2$ to the k-algebra homomorphism $\bar{\varphi} \colon l_1 \to l_2$ defined by $\bar{\varphi}(\bar{\alpha}) \coloneqq \overline{\varphi(\alpha)}$, where α is any lift of $\bar{\alpha} \in l_1 \coloneqq B_1/\mathfrak{q}_1$ to B_1 and $\overline{\varphi(\alpha)}$ is the reduction of $\varphi(\alpha) \in B_2$ to $l_2 \coloneqq B_2/\mathfrak{q}_2$; here $\mathfrak{q}_1, \mathfrak{q}_2$ are the maximal ideals of the valuation rings B_1, B_2 of L_1, L_2 , respectively.

In particular, \mathcal{F} gives a bijection between the isomorphism classes in \mathcal{C}_K^{unr} and \mathcal{C}_k^{sep} , and if L_1, L_2 and have residue fields l_1, l_2 then \mathcal{F} induces a bijection of finite sets

$$\operatorname{Hom}_K(L_1, L_2) \xrightarrow{\sim} \operatorname{Hom}_k(l_1, l_2).$$

Proof. Let us first verify that \mathcal{F} is well-defined. It is clear that it maps finite unramified extensions L/K to finite separable extension l/k, but we should check that the map on morphisms does not depend on the lift α of $\bar{\alpha}$ we pick. So let $\varphi \colon L_1 \to L_2$ be a K-algebra homomorphism, and for $\bar{\alpha} \in l_1$, let α and α' be two lifts of $\bar{\alpha}$ to B_1 . Then $\alpha - \alpha' \in \mathfrak{q}_1$, and this implies that $\varphi(\alpha - \alpha') \in \varphi(\mathfrak{q}_1) = \varphi(B_1) \cap \mathfrak{q}_2 \subseteq \mathfrak{q}_2$, and therefore $\overline{\varphi(\alpha)} = \overline{\varphi(\alpha')}$. The identity $\varphi(\mathfrak{q}_1) = \varphi(B_1) \cap \mathfrak{q}_2 \subseteq \mathfrak{q}_2$ follows from the fact that φ restricts to an injective ring homomorphism $B_1 \to B_2$ and $B_2/\varphi(B_1)$ is a finite extension of DVRs in which \mathfrak{q}_2 lies over the prime $\varphi(\mathfrak{q}_1)$ of $\varphi(B_1)$. It's easy to see that \mathcal{F} sends identity morphisms to identity morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that \mathcal{F} is an equivalence of categories we need to prove two things:

- \mathcal{F} is essentially surjective: each separable l/k is isomorphic to the residue field of some unramified L/K
- \mathcal{F} is full and faithful: the induced map $\operatorname{Hom}_K(L_1, L_2) \to \operatorname{Hom}_k(l_1, l_2)$ is a bijection.

We first show that \mathcal{F} is essentially surjective. Given a finite separable extension l/k, we may apply the primitive element theorem to write

$$l \simeq k(\bar{\alpha}) = \frac{k[x]}{(\bar{g}(x))},$$

for some $\bar{\alpha} \in l$ whose minimal polynomial $\bar{g} \in k[x]$ is necessarily monic, irreducible, separable, and of degree n := [l:k]. Let $g \in A[x]$ be any monic lift of \bar{g} ; then g is also irreducible, separable, and of degree n. Now let

$$L \coloneqq \frac{K[x]}{(g(x))} = K(\alpha),$$

where α is the image of x in K[x]/g(x). Then L/K is a finite separable extension, and by Corollary 10.13, $(\mathfrak{p}, g(\alpha))$ is the unique maximal ideal of $A[\alpha]$ (since \bar{g} is irreducible) and

$$\frac{B}{\mathfrak{q}} \simeq \frac{A[\alpha]}{(\mathfrak{p}, g(\alpha))} \simeq \frac{A[x]}{(\mathfrak{p}, g(x))} \simeq \frac{(A/\mathfrak{p})[x]}{(\bar{g}(x))} \simeq l.$$

We thus have $[L:K] = \deg g = [l:k] = n$, and it follows that L/K is an unramified extension of degree n = f := [l:k]: the ramification index of \mathfrak{q} is necessarily e = n/f = 1, and the extension l/k is separable by assumption (so in fact $B = A[\alpha]$, by Theorem 10.14).

We now show that the functor \mathcal{F} is full and faithful. Given finite unramified extensions L_1, L_2 with valuation rings B_1, B_2 and residue fields l_1, l_2 , we have induced maps

$$\operatorname{Hom}_K(L_1, L_2) \xrightarrow{\sim} \operatorname{Hom}_A(B_1, B_2) \longrightarrow \operatorname{Hom}_k(l_1, l_2).$$

The first map is given by restriction from L_1 to B_1 , and since tensoring with K gives an inverse map in the other direction, it is a bijection. We need to show that the same is true of the second map, which sends $\varphi \colon B_1 \to B_2$ to the k-homomorphism $\overline{\varphi}$ that sends $\overline{\alpha} \in l_1 = B_1/\mathfrak{q}_1$ to the reduction of $\varphi(\alpha)$ modulo \mathfrak{q}_2 , where α is any lift of $\overline{\alpha}$.

As above, use the primitive element theorem to write $l_1 = k(\bar{\alpha}) = k[x]/(\bar{g}(x))$ for some $\bar{\alpha} \in l_1$. If we now lift $\bar{\alpha}$ to $\alpha \in B_1$, we must have $L_1 = K(\alpha)$, since $[L_1 : K] = [l_1 : k]$ is equal to the degree of the minimal polynomial \bar{g} of $\bar{\alpha}$ which cannot be less than the degree of the minimal polynomial g of g (both are monic). Moreover, we also have $B_1 = A[\alpha]$, since this is true of the valuation ring of every finite unramified extension in our category.

Each A-module homomorphism in

$$\operatorname{Hom}_A(B_1, B_2) = \operatorname{Hom}_A\left(\frac{A[x]}{(g(x))}, B_2\right)$$

is uniquely determined by the image of x in B_2 . Thus gives us a bijection between $\text{Hom}_A(B_1, B_2)$ and the roots of g in B_2 . Similarly, each k-algebra homomorphism in

$$\operatorname{Hom}_k(l_1, l_2) = \operatorname{Hom}_k\left(\frac{k[x]}{(\bar{g}(x))}, l_2\right)$$

is uniquely determined by the image of x in l_2 , and there is a bijection between $\operatorname{Hom}_k(l_1, l_2)$ and the roots of \bar{g} in l_2 . Now \bar{g} is separable, so every root of \bar{g} in $l_2 = B_2/\mathfrak{q}_2$ lifts to a unique root of g in B_2 , by Hensel's Lemma 9.15. Thus the map $\operatorname{Hom}_A(B_1, B_2) \longrightarrow \operatorname{Hom}_k(l_1, l_2)$ induced by \mathcal{F} is a bijection.

Remark 10.16. In the proof above we actually only used the fact that L_1/K is unramified. The map $\operatorname{Hom}_K(L_1, L_2) \to \operatorname{Hom}_k(l_1, l_2)$ is a bijection even if L_2/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.15.

Corollary 10.17. Assume AKLB with A a complete DVR with residue field k. Then L/K is unramified if and only if $B = A[\alpha]$ for some $\alpha \in L$ whose minimal polynomial $g \in A[x]$ has separable image \bar{g} in k[x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse direction note that \bar{g} must be irreducible, since otherwise we could use Hensel's lemma to lift a non-trivial factorization of \bar{g} to a non-trivial factorization of g, so the residue field extension is separable and has the same degree as L/K, so L/K is unramified.

Corollary 10.18. Let A be a complete DVR with fraction field K and residue field k, and let ζ_n be a primitive nth root of unity in some algebraic closure of \overline{K} , with n prime to the characteristic of k. The extension $K(\zeta_n)/K$ is unramified.

Proof. The field $K(\zeta_n)$ is the splitting field of $f(x) = x^n - 1$ over K. The image \bar{f} of f in k[x] is separable when $p \nmid n$, since $\gcd(\bar{f}, \bar{f}') \neq 1$ only when $\bar{f}' = nx^{n-1}$ is zero, equivalently, only when p|n. When \bar{f} is separable, so are all of its divisors, including the reduction of the minimal polynomial of ζ_n , which must be irreducible since otherwise we could obtain a contradiction by lifting a non-trivial factorization via Hensel's lemma. It follows that the residue field of $K(\zeta_n)$ is a separable extension of k, thus $K(\zeta_n)/K$ is unramified.

When the residue field k is finite (always the case if K is a local field), we can give a precise description of the finite unramified extensions L/K.

Corollary 10.19. Let A be a complete DVR with fraction field K and finite residue field \mathbb{F}_q . An extension L/K is unramified if and only if $L \simeq K(\zeta_{q^n-1})$, where n := [L:K]. When this holds, $B \simeq A[\zeta_{q^n-1}]$ is the integral closure of A in L and L/K is a Galois extension with $Gal(L/K) \simeq \mathbb{Z}/n\mathbb{Z}$.

Proof. By the previous corollary, $L \simeq K(\zeta_{q^n-1})$ is unramified, and it has degree n because its residue field $l \simeq \mathbb{F}_{q^n}$ is the splitting field of $x^{q^n-1}-1$ over \mathbb{F}_q , which is an extension of degree n (indeed, one can take this as the definition of \mathbb{F}_{q^n}).

We now show that if L/K is unramified of degree n, then $L = K(\zeta_{q^n-1})$. The residue field has degree n and is thus isomorphic to \mathbb{F}_{q^n} , so its multiplicative group is a cyclic of order q^n-1 generated by some $\bar{\alpha}$. The minimal polynomial $\bar{g} \in \mathbb{F}_q[x]$ of $\bar{\alpha}$ divides $x^{q^n-1}-1$, and since \bar{g} is irreducible, it is coprime to the quotient $(x^{q^n-1}-1)/\bar{g}$. By Hensel's Lemma 9.19, we can lift \bar{g} to a polynomial $g \in A[x]$ that divides $x^{q^n-1}-1 \in A[x]$, and by Hensel's Lemma 9.15 we can lift $\bar{\alpha}$ to a root α of g, in which case α is also a root of $x^{q^n-1}-1$; it must be a primitive (q^n-1) -root of unity because its reduction $\bar{\alpha}$ is.

We have $B \simeq A[\zeta_{q^n-1}]$ by Theorem 10.14, and L is the splitting field of $x^{q^n-1}-1$, since its residue field \mathbb{F}_{q^n} is (we can lift the factorization of $x^{q^n-1}-1$ from \mathbb{F}_{q^n} to L via Hensel's lemma). It follows that L/K is Galois, and the bijection between (q^n-1) -roots of unity in L and \mathbb{F}_{q^n} induces an isomorphism $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(l/k) = \operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_{\mathfrak{q}}) \simeq \mathbb{Z}/n\mathbb{Z}$.

Corollary 10.20. Let A be a complete DVR with fraction field K and finite residue field of characteristic p, and suppose that K does not contain a primitive pth root of unity. The extension $K(\zeta_m)/K$ is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.18 implies that $K(\zeta_m)/K$ is unramified. If p divides m then $K(\zeta_m)$ contains $K(\zeta_p)$, which by Corollary 10.19 is unramified if and only if $K(\zeta_p) \simeq K(\zeta_{p^n-1})$ with $n := [K(\zeta_p) : K]$, which occurs if and only if p divides $p^n - 1$ (since $\zeta_p \notin K$), which it does not; thus $K(\zeta_p)$ and therefore $K(\zeta_m)$ is ramified when p|m.

Example 10.21. Consider $A = \mathbb{Z}_p$, $K = \mathbb{Q}_p$, $k = \mathbb{F}_p$, and fix $\overline{\mathbb{F}}_p$ and $\overline{\mathbb{Q}}_p$. For each positive integer n, the finite field \mathbb{F}_p has a unique extension of degree n in $\overline{\mathbb{F}}_p$, namely, \mathbb{F}_{p^n} . Thus for each positive integer n, the local field \mathbb{Q}_p has a unique unramified extension of degree n; it can be explicitly constructed by adjoining a primitive root of unity ζ_{p^n-1} to \mathbb{Q}_p . The element ζ_{p^n-1} will necessarily have minimal polynomial of degree n dividing $x^{p^n-1} - 1$.

Another useful consequence of Theorem 10.15 that applies when the residue field is finite is that the norm map $N_{L/K}$ restricts to a surjective map $B^{\times} \to A^{\times}$ on unit groups; in fact, this property characterizes unramified extensions.

Theorem 10.22. Assume AKLB with A a complete DVR with finite residue field. Then L/K is unramified if and only if $N_{L/K}(B^{\times}) = A^{\times}$.

Proof. See Problem Set 6. \Box

Definition 10.23. Let L/K be a separable extension. The maximal unramified extension of K in L is the subfield

$$\bigcup_{\substack{K\subseteq E\subseteq L\\E/K \text{ fin. unram.}}} E\subseteq L$$

where the union is over finite unramified subextensions E/K. When $L=K^{\text{sep}}$ is the separable closure of K, this is the maximal unramified extension of K, denoted K^{unr} .

Example 10.24. The field $\mathbb{Q}_p^{\text{unr}}$ is an infinite extension of \mathbb{Q}_p with Galois group

$$\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) = \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \simeq \varprojlim_n \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}},$$

where the inverse limit is taken over positive integers n ordered by divisibility. The ring \mathbb{Z} is the *profinite completion* of \mathbb{Z} . The field $\mathbb{Q}_p^{\mathrm{unr}}$ has value group \mathbb{Z} and residue field \mathbb{F}_p .

Theorem 10.25. Assume AKLB with A a complete DVR and separable residue field extension l/k. Let $e_{L/K}$ and $f_{L/K}$ be the ramification index and residue field degrees, respectively. The following hold:

- (i) There is a unique intermediate field extension E/K that contains every unramified extension of K in L and it has degree $[E:K] = f_{L/K}$.
- (ii) The extension L/E is totally ramified and has degree $[L:E] = e_{L/K}$.
- (iii) If L/K is Galois then $Gal(L/E) = I_{L/K}$, where $I_{L/K} = I_{\mathfrak{q}}$ is the inertia subgroup of Gal(L/K) for the unique prime \mathfrak{q} of B.

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite separable extension l/k given by the functor \mathcal{F} in Theorem 10.15; then $[E:K]=[l:k]=f_{L/K}$ as desired. The image of the inclusion $l\subseteq l$ of the residue fields of E and L induces a field embedding $E\hookrightarrow L$ in $\operatorname{Hom}_K(E,L)$, via the functor \mathcal{F} . Thus we may regard E as a subfield of L, and it is unique up to isomorphism. If E'/K is any other unramified

extension of K in L with residue field k', then the inclusions $k' \subseteq l \subseteq l$ induce embeddings $E' \subseteq E \subseteq L$ that must be inclusions.

- (ii) We have $f_{L/E} = [l:l] = 1$, so $e_{L/E} = [L:E] = [L:K]/[E:K] = e_{L/K}$. (iii) By Proposition 7.23, we have $I_{L/E} = \operatorname{Gal}(L/E) \cap I_{L/K}$, and these three groups all have the same order $e_{L/K}$ so they must coincide.

References

- [1] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, 1995.
- [2] N. Koblitz, p-adic numbers, p-adic analysis, and zeta function, Springer, 1984.
- [3] S. Lang, Algebraic number theory, second edition, Springer, 1994.
- [4] J. Neukirch, Algebraic number theory, Springer, 1999.