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9 Local fields and Hensel’s lemmas

9.1 Extending valuations

Recall from Lecture 3 that each prime p of a Dedekind domain A determines a discrete
valuation (a surjective homomorphism) vp : IA → Z that assigns to a nonzero fractional
ideal I the exponent np appearing in the unique factorization of I =

∏
pnp into prime

ideals; equivalently, vp(I) is the unique integer n for which IAp = pnAp. This induces a
discrete valuation vp(x) := vp(xA) on the fraction field K, and a corresponding absolute
value |x|p := cvp(x) (with 0 < c < 1). In the AKLB setup, where L/K is a finite separable
extension and B is the integral closure of A in L, the primes q|p of B similarly give rise to
discrete valuations vq on L, each of which restricts to a valuation on K; we would like to
understand how these relate to vp.

Definition 9.1. Let L/K be a finite separable extension, and let v and w be discrete
valuations on K and L respectively. If w|K = ev for some e ∈ Z>0 then we say that w
extends v with index e.

Theorem 9.2. Assume AKLB and let p be a prime of A. For each prime q|p, the discrete
valuation vq extends vp with index eq, and every discrete valuation on L that extends vp
arises in this way. In other words, the map q 7→ vq gives a bijection from the set of primes
q|p to the set of discrete valuations of L that extend vp.

Proof. For each prime q|p we have vq(pB) = eq (by definition of the ramification index eq),
while vq(rB) = 0 for all primes r 6= p of A (since q lies above only one prime of A). If
I =

∏
r r

nr is any nonzero fractional ideal of A then

vq(IB) = vq

(∏
r

rnrB

)
= vq(p

npB) = vq(pB)np = eqnp = eqvp(I),

so vq(x) = vq(xB) = eqvp(xA) = eqvp(x) for all x ∈ K×; thus vq extends vp with index eq.
If q and q′ are two distinct primes above p then neither contains the other and for any

x ∈ q− q′ we have vq(x) > 0 ≥ vq′(x), thus vq 6= vq′ and the map q 7→ vq is injective..
Let w be a discrete valuation on L that extends vp, let W = {x ∈ L : w(x) ≥ 0} be the

associated DVR, and let m = {x ∈ L : w(x) > 0} be its maximal ideal. Since w|K = evp,
the discrete valuation w is nonnegative on A and positive on p, so A ⊆ W and p = m ∩ A.
The DVR W is integrally closed in its fraction field L, so B ⊆ W . Let q = m ∩B. Then q
is prime (since m is), and p = m ∩A = q ∩A, so q lies over p. The ring W contains Bq and
is properly contained in L, which is the fraction field of Bq. But there are no intermediate
rings between a DVR and its fraction field, so W = Bq and w = vq (and e = eq).

9.2 Local fields

Definition 9.3. A local field is a field K with a nontrivial absolute value | | that is locally
compact under the topology induced by | |.

Recall that a topological space is locally compact if every point has a compact neigh-
borhood.1 The topology induced by | | is given by the metric d(x, y) := |x − y|. A metric
space is locally compact if and only if every point lies in a compact closed ball.

1Weaker definitions of locally compact are sometimes used, but they all imply this one and when X is
Hausdorff (as it always will be for us) these alternative definitions are equivalent to ours.
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Example 9.4. Under the standard archimedean absolute value both R and C are local
fields but Q is not. Indeed no closed ball in Q is compact, it is always missing limit points
(in a metric space a compact set must contains all its limit points). Finite fields are not
local fields because they have no nontrivial absolute values.

Our next goal is to give an alternative characterization of local fields which shows that
they are precisely the fields we get by completing a global field. As in the previous lecture,
we use B<r(x) := {y : |y − x| < r} to denote the open ball of radius r ∈ R>0 about x, and
use B≤r(x) := {y : |y − x| ≤ r} to denote a closed ball. In any metric space, open balls are
open sets and closed balls are closed sets; in a nonarchimedean metric space, open balls are
both open and closed, as are closed balls.

Lemma 9.5. Let K be a field with a nontrivial absolute value | |. Then K is a local field
if and only if every (equivalently, any) closed ball in K is compact.

Proof. Suppose K is a local field. Then 0 ∈ K lies in a compact closed ball B≤s(0). Pick
c ∈ K× with |c| > 1 (this is possible because | | is nontrivial). The map x 7→ cx is
continuous and | | is multiplicative, so B≤|c|ns(0) is compact for every n ∈ Z>0 (recall that
the continuous image of a compact set is compact). We thus have compact balls about 0
of arbitrarily large radii, implying that every closed ball B≤r(0) is a closed subset of a
compact set, hence compact. For every z ∈ K the translation map x 7→ x+ z is continuous,
so every closed ball B≤r(z) is compact. This proves the forward implication, and the reverse
implication is immediate. For the parenthetical, note that the argument above still works
if we replace B≤s(0) by any closed ball.

Corollary 9.6. Let K be a local field with absolute value | |. Then K is complete.

Proof. Suppose not. Then there is a Cauchy sequence (xn) in K that converges to a limit
x ∈ K̂ − K. Pick N ∈ Z>0 so that |xn − x| < 1/2 for all n ≥ N (here we are using the
extension of | | to K̂), and consider the closed ball S := B≤1(xN ) in K, which is compact by
Lemma 9.5. The Cauchy sequence (xn)n≥N in S has a convergent subsequence whose limit
lies in S ⊆ K, since S is compact, but this limit must be equal to x 6∈ K, a contradiction.

Proposition 9.7. Let K be a field with absolute value | |v induced by a discrete valuation v,
let A be its valuation ring, and let π be a uniformizer. Then K is a local field if and only
if K is complete and the residue field A/πA is finite.

Proof. If K is a local field then K is complete, by Corollary 9.6, and the valuation ring

A = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x|v ≤ 1} = B≤1(0)

is a closed ball, hence compact, by Lemma 9.5. The cosets x+πA of the subgroup πA ⊆ A
are open balls B<1(x), since y ∈ x + πA if and only if |x − y|v ≤ |π|v < 1. The set
{x+ πA : x ∈ A} of cosets of πA is thus an open cover of A by disjoint sets which must be
finite, since A is compact. Thus A/πA is finite.

Now suppose that K is complete and A/πA is finite. Then A = Â is complete and
Proposition 8.11 gives an isomorphism of topological rings

A = Â ' lim←−
n

A

πnA
.

Each quotient A/πnA is finite, since A/πA is, and therefore compact; it follows that the
inverse limit, and therefore A, is compact, by Proposition 8.10. Thus K contains a compact
closed ball B≤1(0) = A and is locally compact by Lemma 9.5, hence a local field.
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Recall that a global field L is a finite extension of Q or Fq(t) that we can always assume
to be separable (if L has positive characteristic p we take Fq to be the algebraic closure of Fp

in L and choose t so that it is a separating transcendental element). In particular, we are
always in an AKLB setting, where A = OK is either Z or Fq[t] (both Dedekind domains)
and B = OL is the integral closure of A in L. The residue fields of A thus have the form
Z/pZ or Fq[t]/(f) for some irreducible f ∈ Fq[t] and are all finite, and it follows that the
residue fields of B are all finite, since they are all finite extensions of a residue field of A.

Corollary 9.8. Let L be a global field with a nontrivial absolute value | |v. Then the
completion Lv of L with respect to | |v is a local field.

Proof. Let L/K be a finite separable extension with K = Q or K = Fq(t), let A = OK ,
and let B = OL. If | |v is archimedean, then K = Q and the completion of L with respect
to | |v must be a finite extension of R, the completion of Q with respect to its archimedean
absolute value (which is unique up to equivalence, by Ostrowski’s theorem). Therefore Lv

is isomorphic to either R or C (as a topological field), both of which are local fields.
We now assume that | |v is nonarchimedean. We claim that in this case | |v is induced by

a discrete valuation. Let C := {x ∈ L : |x|v ≤ 1}. be the valuation ring corresponding to | |v.
Then C is a local ring equal to the union of its maximal ideal m := {x ∈ L : |x|v < 1} and
its unit group C× = {x ∈ L : |x|v = 1}. The restriction of | |v to K is a nonarchimedean
absolute value, and from the classification of absolute values on Q and Fq(t) proved on
Problem Set 1, we can assume it is induced by a discrete valuation on A; in particular,
|x|v ≤ 1 for all x ∈ A, and therefore A ⊆ C. Like all valuation rings (discrete or not), C
is integrally closed in its fraction field L, and C contains A, so C contains B. The ideal
q = m∩B is therefore maximal, and the DVR Bq lies in C and is therefore equal to C, since
there are no intermediate rings between a DVR and its fraction field (we cannot have C = L
because | |v is nontrivial). It follows that the absolute value induced by vq is equivalent to
| |v, since they have the same valuation rings, and by choosing 0 < c < 1 appropriately, we
can assume | · |v = cvq(·) is induced by vq. The residue field Bq/qBq ' B/q is finite, since it
is a finite extension of the finite field A/p.

If we now consider the completion Lv with valuation ring Bv, we can take any uniformizer
π for q ⊆ B ⊆ Bv as a uniformizer for Bv, and we have

B

q
' Bq

qBq
=

Bq

πBq
' Bv

πBv
,

so Bv/πBv is finite. Thus Lv is a complete field with an absolute value induced by a discrete
valuation with finite residue field, and therefore a local field, by Proposition 9.7.

In order to classify all local fields we require the following result from topology.

Proposition 9.9. A locally compact topological vector space over a nondiscrete locally com-
pact field has finite dimension.

Proof. See [3, Prop. 4-13.iv].

Theorem 9.10. Let L be a local field. If L is archimedean then it is isomorphic to R or C;
otherwise, L is isomorphic to a finite extension of Qp or Fp((t)) for some prime p.

Proof. Let L be a local field with nontrivial absolute value | |; then L is complete, by
Corollary 9.6. If char(L) = 0, then the prime field of L is Q, and L contains the completion
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of Q with respect to | |, by the universal property of completions. By Ostrowski’s theorem
(see Problem Set 1), L contains a subfield K isomorphic to Qp for some prime p, or to R.

If char(k) = p > 0 then the prime field of L is Fp, and L must contain a transcendental
element t, since no algebraic extension of Fp has a nontrivial absolute value: in an algebraic
extension L of Fp, every nonzero α ∈ L× has some finite order n, and this implies |α| = 1
because αn = 1 implies |αn| = |α|n = 1 and therefore |α| = 1, because the only nth root
of 1 in R≥0 is 1. Thus L contains the completion of Fp(t) with respect to | |, and every
completion of Fp(t) is isomorphic to Fq((t)) for some q a power of p, each of which is a finite
extension of Fp((t)). So in this case L contains a subfield K isomorphic to Fp((t)).

If K is archimedean then K = R is a local field, and if K is nonarchimedean then
Proposition 9.7 implies that K is a local field, since Qp and Fp((t)) are both complete fields
with discrete valuations that have finite residue fields. Thus K is a local field and therefore
locally compact; it is nondiscrete because its absolute value is nontrivial. Proposition 9.9
implies that L has finite degree over K. If K is archimedean then K = R, and L must be
R or C; otherwise, L is a finite extension of Qp or Fp((t)) as claimed.

9.3 Hensel’s lemmas

Definition 9.11. Let R be a (commutative) ring, and let f(x) =
∑d

i=0 fix
i ∈ R[x] be a

polynomial. The (formal) derivative f ′ of f is the polynomial f ′(x) :=
∑d

i=1 ifix
i−1 ∈ R[x].

Note that the canonical ring homomorphism Z → R defined by 1 7→ 1 allows us to
view the integers i as elements of R (the map Z → R will be injective only when R has
characteristic zero, but it is well defined in any case). It is easy to verify that the formal
derivative satisfies the following identities:

(f + g)′ = f ′ + g′,

(fg)′ = f ′g + fg′,

(f ◦ g)′ = (f ′ ◦ g)g′.

When the characteristic of R is positive, we may have deg f ′ < deg f −1. For example, if R
has characteristic p > 0 and g(x) = f(xp) for some f ∈ R[x], then g′ = f ′(xp)pxp−1 = 0
(conversely, one can show that g′ = 0 implies g(x) = f(xp) for some f ∈ R[x]).

Lemma 9.12. Let R be a ring, let f =
∑d

i=0 fix
i ∈ R[x] be a polynomial, and let a ∈ R.

Then f(x) = f(a) + f ′(a)(x− a) + g(x)(x− a)2 for a unique g ∈ R[x].
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Proof. Without loss of generality, we assume d ≥ 2 (let fi = 0 for i > deg f). We have

f(x) = f(a+ (x− a))

=

d∑
i=0

fi(a+ (x− a))i

=
d∑

i=0

fi

i∑
j=0

(
i

j

)
aj(x− a)i−j

= f(a) +
d∑

i=1

fi

i−1∑
j=0

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) +
d∑

i=2

fi

i−2∑
j=0

(
i

j

)
aj(x− a)i−j

= f(a) + f ′(a)(x− a) +

 d∑
i=2

fi

i−2∑
j=0

(
i

j

)
aj(x− a)i−2−j

 (x− a)2,

so we can take g(x) =
∑d

i=2 fi
∑i−2

j=0

(
i
j

)
aj(x− a)i−2−j ∈ R[x].

Remark 9.13. The lemma can be viewed as giving the first two terms of a formal Taylor
expansion of f(x) about a. Note that the binomial coefficients

(
i
j

)
are integers, hence well

defined elements of R under the canonical homomorphism Z→ R, even if j! is divisible by
the characteristic of R. In the usual Taylor expansion

f(x) =
∞∑
i=0

f (i)(a)

i!
(x− a)i

used in characteristic zero, if f is a polynomial then f (i)(a) is necessarily a multiple of i!,
so f (i)(a)/i! is actually a well defined element of R in any characteristic.

Corollary 9.14. Let R be a ring, f ∈ R[x], and a ∈ R. Then f(a) = f ′(a) = 0 if and only
if a is (at least) a double root of f , that is, f(x) = (x− a)2g(x) for some g ∈ R[x].

Definition 9.15. Let f ∈ R[x] be a polynomial over a ring R and let a ∈ R. If f(a) = 0
and f ′(a) 6= 0 then a is a simple root of f .

If R is a ring and I is an ideal, by a lift of an element of R/I, we mean a preimage
under the quotient map R→ R/I. We now state the (apparently) weakest form of what is
known as Hensel’s Lemma.

Lemma 9.16 (Hensel’s Lemma I). Let A be a complete DVR with maximal ideal p and
residue field k := A/p. Suppose f ∈ A[x] is a monic polynomial whose reduction to k[x] has
a simple root r ∈ k. Then r can be lifted to a root of f in A.

Proof. We work in the quotient field K of A. Let a0 be any lift of r to A; the element a0
is not necessarily a root of f , but it is a root modulo p. We will show that a0 is the first
term of a Cauchy sequence (an), where each an is a root of f modulo p2

n
. In terms of

the absolute value | · | := cvp(·) (for some 0 < c < 1) on K, we have |f(an)| ≤ c2
n

rapidly
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converging to 0. The assumption that r is a simple root means that |f ′(a0)| = 1, and we
have ε := |f(a0)/f

′(a0)
2| ≤ c < 1.

Our proof only requires ε < 1, so it actually works in many cases where r is not a simple
root (see Lemma 9.17 below); we also don’t need f to be monic. For each n ≥ 0 we define

an+1 := an − f(an)/f ′(an).

We will prove by induction on n that

(a) |an| ≤ 1 (so an ∈ A);

(b) |an − a0| ≤ ε < 1 (so an ≡ a1 mod p, equivalently, an is a lift of r);

(c) |f ′(an)| = |f ′(a0)| 6= 0 (so an+1 is well defined);

(d) |f(an)| ≤ ε2n |f ′(a0)|2 (so |f(an)| and therefore f(an) converges rapidly to 0).

The base case n = 0 is clear. We now assume (a), (b), (c), (d) for n and prove them for
n+ 1:

(a) |an+1 − an| = |f(an)/f ′(an)| ≤ ε2
n |f ′(a0)2|/|f ′(a0)| = ε2

n |f ′(a0)| ≤ ε2
n

(by (c),(d)),
therefore |an+1| = |an+1 − an + an| ≤ max(|an+1 − an|, |an|) ≤ 1 (by (a)).

(b) |an+1 − a0| ≤ max(|an+1 − an|, |an − a0|) ≤ max(ε2
n
, ε) = ε (as above and using (b)).

(c) Applying Lemma 9.12 to f ′(x) at an and substituting an+1 for x yields

f ′(an+1) = f ′(an)− f ′′(an)
f(an)

f ′(an)
+ α

(
f(an)

f ′(an)

)2

,

where f ′′(an) ∈ A and α = g(an+1) ∈ A for some g ∈ A[x] (so |f ′′(an)|, |α| ≤ 1). We
have |f(an)/f ′(an)| = |f(an)|/|f ′(a0)| ≤ ε2

n |f ′(a0)|, by (d), so the absolute values of
the last two terms on the RHS are strictly smaller than first |f ′(an)| = |f ′(a0)|, thus
|f ′(an+1)| = |f ′(an)| = |f ′(a0)| 6= 0.

(d) Applying Lemma 9.12 to f(x) and substituting an+1 for x yields

f(an+1) = f(an)− f ′(an)
f(an)

f ′(an)
+ β

(
f(an)

f ′(an)

)2

= β

(
f(an)

f ′(an)

)2

,

where β = h(an+1) for some h ∈ A[x]. We have |β| ≤ 1, so (d) gives

|f(an+1)| ≤ |f(an)/f ′(an)|2 = |f(an)|2/|f ′(a0)|2 ≤ ε2
n+1 |f ′(a0)|2.

We have |an+1 − an| ≤ ε2
n → 0 as n → ∞, and for a nonarchimedean absolute value

this implies (an) is Cauchy. Thus a := limn→∞ an ∈ A, since A is complete. We have
f(a) = limn→∞ f(an) = 0, so a is a root of f , and |a− a0| = limn→∞ |an − a0| < 1, so a is
a lift of r ≡ a0 mod p.

We now record the stronger form of Hensel’s lemma that we actually proved above.

Lemma 9.17 (Hensel’s Lemma II). Let A be a complete DVR. Let f ∈ A[x], and suppose
a0 ∈ A satisfies

|f(a0)| < |f ′(a0)|2
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(in particular, f ′(a1) 6= 0), and for n ≥ 0 define

an+1 := an − f(an)/f ′(an).

The sequence (an) is well-defined and converges to the unique root a ∈ A of f for which

|a− a0| ≤ ε := |f(a0)|/|f ′(a0)|2.

Moreover, |f(an)| ≤ ε2n|f ′(a0)|2 for all n ≥ 0.

We should note the similarity between Lemma 9.17 and Newton’s method for finding
(or more closely approximating) a root of a polynomial given an initial approximation.
Like Newton’s method, the recurrence in Lemma 9.17 converges quadratically, meaning
that we double the number of p-adic digits in our approximation with each iteration. But
Lemma 9.17 is even better than Newton’s method, for two reasons: (1) if the residue field
is finite, finding an initial approximation is very easy, and (2) once we have an initial
approximation with ε < 1, convergence is guaranteed.

Remark 9.18. The hypothesis in Lemmas 9.16 and 9.17 that A is a complete DVR is not
necessary, the proof generalizes to any complete local ring. But even completeness is not
strictly necessary. A local ring A in which Lemma 9.16 holds without the hypothesis that
A is a complete DVR is called a henselian ring. One can show that Lemma 9.17 necessarily
also holds in any henselian ring, as do many other forms of “Hensel’s Lemma”, including
Lemma 9.20 below. In general, any lemma that holds for a local ring if and only if it is a
henselian ring may be called ”Hensel’s Lemma”, and there are at least a dozen candidates;
see [4, Tag 04GE], for example. One can define the henselization of a noetherian local
ring R as the minimal extension of a ring that is henselian (as usual, it is minimal (and
unique) in the sense of satisfying a universal property); in many cases this turns out to be
the algebraic closure of R in its completion. The henselization of R is often much smaller
than its completion (e.g. finite over R in cases where R̂ is not), and can serve as a substitute
for the completion in algebraic settings.

Example 9.19. Let A = Z5 and f(x) = x2 − 6 ∈ Z5[x]. Then f̄(x) = x2 − 1 ∈ F5[x] has
r = 1 as a simple root. By Lemma 9.16 there is a unique a ∈ Z5 such that a2 − 6 = 0 and
a ≡ 1 mod 5. We could also have chosen r = −1, which would give another distinct root of
f(x), which must be −a. Thus Z5 contains two distinct square roots of 6.

Now let A = Z2 and f(x) = x2− 17. Then f̄(x) = x2− 1 = (x− 1)2 has no simple roots
(note f̄ ′ = 0). But if we let a0 = 1, then f(a0) = −16 and |f(a0)| = 1/16, while f ′(a0) = 2
and |f ′(a0)| = 1/2. We thus have |f(a0| < |f ′(a0)|2 and can apply Lemma 9.17 to get a
square root of 17 in Z2.

There is a another version of Hensel’s Lemma we need (which is considered by some to
be the “canonical” one). Recall that polynomial over a ring is primitive if its coefficients
generate the unit ideal (over a DVR this just means that at least one coefficient is a unit).

Lemma 9.20 (Hensel’s lemma III). Let A be a complete DVR with maximal ideal p and
residue field k, let f ∈ A[x] be a primitive polynomial with image f̄ in k[x], and suppose
f̄ = ḡh̄ for some coprime ḡ, h̄ ∈ k[x]. Then there exist polynomials g, h ∈ A[x] for which
f = gh with g ≡ ḡ mod p and h ≡ h̄ mod p such that deg g = deg ḡ.

Proof. See [2, Theorem II.4.6].
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This form of Hensel’s lemma has the following useful corollary.

Lemma 9.21 (Hensel-Kürschák lemma). Let A be a complete DVR with fraction field K,
and let f ∈ K[x] be an irreducible polynomial whose leading and constant coefficients lie
in A. Then f ∈ A[x].

Proof. Let p = (π) be the maximal ideal of A, let k := A/p, and write f =
∑n

i=0 fix
i with

fn 6= 0. Let m = min{vp(fi)}. Suppose for the sake of contradiction that m < 0, and let
g := π−mf =

∑n
i=0 gix

i ∈ A[x]. Then g is a primitive irreducible polynomial in A[x] with
g0, gn ∈ p, since m < 0 and f0, fn ∈ A. The reduction ḡ of g to k[x] is divisible by ū := xd

for some uniquely determined d for which the quotient v̄ := g/xd ∈ k[x] is coprime. We
must have 0 < d < n because g0, gn ∈ p both reduce to zero in k = A/p. It follows from
Lemma 9.20 that g = uv for some u, v ∈ A[x] with 0 < deg u = deg ū < n. This implies
that g is not irreducible, which is a contradiction. So m ≥ 0 and f ∈ A[x].

Corollary 9.22. Let A be a complete DVR with fraction field K, and let L/K be a finite
extension of degree n. Then α ∈ L is integral over A if and only if NL/K(α) ∈ A.

Proof. Let f =
∑d

i=0 fix
i ∈ K[x] be the minimal polynomial of α. If α is integral over A

then f ∈ A[x] (by Proposition 1.25) and NL/K(α) = (−1)nf(0)e ∈ A, where e = [L : K(b)],
by Proposition 4.44. Conversely, if NL/K(α) = (−1)nf(0)e ∈ A, then f(0) ∈ A, since
f(0) ∈ K is a root of xe − (−1)nNL/K(α) ∈ A[x] and A is integrally closed. Thus the
constant coefficient of f lies in A, as does its leading coefficient (it is monic), so f ∈ A[x],
by Lemma 9.21.
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