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8 Complete fields and valuation rings

In order to make further progress in our investigation of finite extensions L/K of the fraction
field K of a Dedekind domain A, and in particular, to determine the primes p of K that
ramify in L, we introduce a new tool that will allows us to “localize” fields. We have already
seen how useful it can be to localize the ring A at a prime ideal p. This process transforms
A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly
one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7,
the localizations of A at its prime ideals p collectively determine the ring A.

Localizing A does not change its fraction field K. However, there is an operation we
can perform on K that is analogous to localizing A: we can construct the completion of K
with respect to one of its absolute values. When K is a global field, this process yields
a local field (a term we will define in the next lecture), and we can recover essentially
everything we might want to know about K by studying its completions. At first glance
taking completions might seem to make things more complicated, but as with localization,
it actually simplifies matters considerably.

For those who have not seen this construction before, we briefly review some background
material on completions, topological rings, and inverse limits.

8.1 Completions

Recall that an absolute value on a field k is a function | | : k → R≥0 that satisfies

1. |x| = 0 if and only if x = 0;

2. |xy| = |x||y|;
3. |x+ y| ≤ |x|+ |y|.

If in addition the stronger condition

4. |x+ y| ≤ max(|x|, |y|)

holds, then we say that | | is nonarchimedean. This definition does not depend on the fact
that k is a field; it makes sense for any ring. However, absolute values exist only on rings
that are integral domains, since a, b 6= 0⇒ |a|, |b| 6= 0⇒ |ab| = |a||b| 6= 0⇒ ab 6= 0.

For a more general notion, we can instead consider a metric on a set X, which we recall
is a function d : X ×X → R≥0 that satisfies

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ d(x, y) + d(y, z).

A metric that also satisfies

4. d(x, z) ≤ max(d(x, y), d(y, z))

is an ultrametric and said to be nonarchimedean. Every absolute value induces a metric
d(x, y) := |x− y|. The metric d defines a topology on X generated by open balls

B<r(x) := {y ∈ X : d(x, y) < r}.
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with r ∈ R>0 and x ∈ X, and we call X a metric space. It is a Hausdorff space, since distinct
x, y ∈ X have disjoint open neighborhoods B<r(x) and B<r(y) (take r = d(x, y)/2), and
we note that each closed ball

B≤r(x) := {y ∈ X : d(x, y) ≤ r}

is a closed set, since its complement is the union of B<(d(x,y)−r)(y) over y ∈ X −B≤r(x).

Definition 8.1. Let X be a metric space. A sequence (xn) of elements of X converges (to
the limit x) if there is an x ∈ X such that for every ε > 0 there is an N ∈ Z>0 such that
d(xn, x) < ε for all n ≥ N ; the limit x is necessarily unique. the sequence (xn) is Cauchy
if for every ε > 0 there is an N ∈ Z>0 such that d(xm, xn) < ε for all m,n ≥ N . Every
convergent sequence is Cauchy, but the converse need not hold. If every Cauchy sequence
converges, we say that X is complete.

When X is a ring or field whose metric is induced by an absolute value | |, we say
that X is complete with respect to | |. Which sequences converge and which are Cauchy
depends very much on the absolute value | | that we use. As we have seen in the case
X = Q, a field may have infinitely many inequivalent absolute values. Equivalent absolute
values necessarily agree on which sequences are convergent and which are Cauchy, so if a
field is complete with respect to an absolute value it is also complete with respect to every
equivalent absolute value.

Definition 8.2. Let X be a metric space. Two Cauchy sequences (xn) and (yn) are
equivalent if d(xn, yn) → 0 as n → ∞; this defines an equivalence relation on the set of
Cauchy sequences in X. The completion of X is the metric space X̂ whose elements are
equivalence classes of Cauchy sequences with the metric

d([(xn)], [(yn)]) = lim
n→∞

d(xn, yn).

The space X is canonically embedded in its completion via the map x 7→ x̂ = [(x, x, . . .)],
and we view X as a subspace of X̂.

When X is a ring we extend the ring operations to X̂ a ring by defining

[(xn)] + [(yn)] := [(xn + yn)] and [(xn)][(yn)] := [(xnyn)].

The additive and multiplicative identities are then 0 := [(0, 0, · · · )] and 1 := [(1, 1, . . . )].
One may verify that the ring axioms hold, and that if X is a field then so is X̂ with
1/[(xn)] = [(1/xn)], where we choose the Cauchy sequence (xn) representing [(xn)] 6= 0 so
that xn 6= 0 for all n. If the metric on X is induced by an absolute value | |, we extend | |
to an absolute value on X̂ via ∣∣[(xn)]

∣∣ := lim
n→∞

|xn|

(that this limit exists follows from the triangle inequality and the fact that R is complete).
If | | arises from a discrete valuation v on K (meaning |x| := cv(x) for some c ∈ (0, 1)), we
extend v to a discrete valuation on X̂ via

v([(xn)]) := lim
n→∞

v(xn) ∈ Z

(note that the sequence (v(xn)) is eventually constant), and find that |[(xn)]| = cv([(xn)]).
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Proposition 8.3. Let K̂ be the completion of a field K with respect to an absolute value | |.
The field K̂ is complete, and has the following universal property: every embedding of K
into a complete field L can be uniquely extended to an embedding of K̂ into L. Up to a
canonical isomorphism, K̂ is the unique field with this property.

Proof. See Problem Set 4.

The proposition implies that the completion of K̂ is (isomorphic to) itself (apply the
universal property of the completion of K̂ to the trivial embedding K̂ → K̂). Completing a
field that is already complete has no effect. In particular, the completion of K with respect
the trivial absolute value is just K: the only sequences that are Cauchy with respect to the
trivial absolute value are those that are eventually constant, all of which clearly converge.

8.1.1 Topological fields with an absolute value

Let K be a field with an absolute value | |. Then K is also a topological space under the
metric d(x, y) = |x− y| induced by the absolute value, and moreover it is a topological field.

Definition 8.4. An abelian group G is a topological group if it is a topological space in
which the map G × G → G defined by (g, h) 7→ g + h and the map G → G defined by
g 7→ −g are both continuous (here G×G has the product topology). A commutative ring R
is a topological ring if it is a topological space in which the maps R × R → R defined
by (r, s) 7→ r + h and (r, s) 7→ rs are both continuous; the additive group of R is then a
topological group, since (−1, s) 7→ −s is continuous, but the unit group R× need not be a
topological group. A field K is a topological field if it is a topological ring whose unit group
is a topological group.

If R is a ring with an absolute value then it is a topological ring under the induced
topology, and its unit group is also a topological group ; in particular, if R is a field
then it is a topological field. These facts follow from the the triangle inequality and the
multiplicative property of an absolute value (the proofs are the same as in real analysis).

Two absolute values on the same field induce the same topology if and only if they are
equivalent; this follows from the Weak Approximation Theorem.

Theorem 8.5 (Weak Approximation). Let K be a field and let | · |1, . . . , | · |n be pairwise
inequivalent nontrivial absolute values on K. Let a1, . . . , an ∈ K and let ε1, . . . , εn be positive
real numbers. Then there exists an x ∈ K such that |x− ai|i < εi for 1 ≤ i ≤ n.

Proof. See Problem Set 4.

Corollary 8.6. Let K be a field with absolute values | |1 and | |2. The induced topologies
on K coincide if and only if | |1 and | |2 are equivalent.

The topology induced by a nonarchimedean absolute value has some features that may
be counterintuitive to the uninitiated. In particular, every open ball is also closed, so
the closure of B<r(x) is not B≤r(x) unless these two sets are already equal. The latter
can definitely happen: the map | | : K → R≥0 need not be surjective, and will even have
discrete image when | | arises from a discrete valuation. This means that is entirely possible
to have B<r(x) = B<s(x) for r 6= s; indeed this must occur uncountably often if | | arises
from a discrete valuation. The reader may wish to verify that the following hold in any
nonarchimedean metric space X:
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1. Every point in an open ball is a center: B<r(y) = B<r(x) for all y ∈ B<r(x).

2. Any pair of open balls are either disjoint or concentric (have a common center).

3. Every open ball is closed and every closed ball is open.

4. All triangles are isosceles (for any x, y, z ∈ X we have #{d(x, y), d(y, z), d(z, x)} ≤ 2).

5. X is totally disconnected : every pair of distinct points have disjoint open neighbor-
hoods whose union is the whole space (every connected component is a point).

For any topological space X, the continuity of a map f : X ×X → X implies that for
every fixed x ∈ X the maps X → X defined by y 7→ f(x, y) and y 7→ f(y, x) are continuous,
since each is the composition f ◦ φ of f with the continuous map φ : X → X ×X defined
by y 7→ (x, y) and y 7→ (y, x), respectively. For an additive topological group G this means
that every translation-by-h map g 7→ g + h is a homeomorphism, since it is continuous and
has a continuous inverse (translate by −h); in particular, translates of open sets are open
and translates of closed sets are closed. A consequence of this is that in order to understand
the topology of a topological group, it suffices to focus on neighborhoods of the identity;
any base of open neighborhoods about the identity determines the entire topology. It also
means that any topological property of a subgroup (such as being open, closed, or compact)
applies to all of its cosets.

If K̂ is the completion of a field K with respect to an absolute value | |, then K̂ is a
topological field with the topology induced by | |, and the subspace topology on K ⊆ K̂ is
the same as the topology on K induced by | |. By construction, K is dense in K̂; indeed,
K̂ is precisely the set of limit points of K. More generally, every open ball B<r(x) in K is
dense in the corresponding open ball B<r(x) in K̂.

8.1.2 Inverse limits

Inverse limits are a general construction that can be applied in any category with products,
although we will only be concerned with inverse limits in familiar concrete categories such as
groups, rings, and topological spaces. Recall that a concrete category is one whose objects
can be defined as sets (more formally, it is a category that admits a faithful functor to the
category of sets), which allows us to speak of the elements of an object in the category.

Definition 8.7. A directed set is a set I with a relation “≤” that is reflexive (i ≤ i),
anti-symmetric (i ≤ j ≤ i ⇒ i = j), and transitive (i ≤ j ≤ k ⇒ i ≤ k), in which every
finite subset has an upper bound (in particular, I is non-empty).

Definition 8.8. An inverse system (projective system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I and a family of morphisms {fij : Xi ← Xj : i ≤ j}
(note the direction) such that each fii is the identity and fik = fij ◦ fjk for all i ≤ j ≤ k.1

Definition 8.9. Let (Xi, fij) be an inverse system in a concrete category with products.
The inverse limit (or projective limit) of (Xi, fij) is the object

X := lim←−Xi :=

{
x ∈

∏
i∈I

Xi : xi = fij(xj) for all i ≤ j

}
⊆
∏
i∈I

Xi

(whenever such an object X exists in the category). The restrictions πi : X → Xi of the
projections

∏
Xi → Xi satisfy πi = fij ◦ πj for i ≤ j.

1Some (but not all) authors reserve the term projective system for cases where the fij are epimorphisms.
This distinction is not relevant to us, as our inverse systems will all use epimorphisms (surjections, in fact).
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The object X = lim←−Xi has the universal property that if Y is another object with
morphisms ψi : Y → Xi that satisfy ψi = fij ◦ψj for i ≤ j, then there is a unique morphism
Y → X for which all of the diagrams

Y

X

Xi Xj

←

→

ψi

←

→

ψj

←→ ∃!

←→

πi

←

→πj

←→

fij

commute (this universal property defines an inverse limit in any category with products).

As with other categorical constructions satisfying (or defined by) universal properties,
uniqueness is guaranteed, but existence is not. However, in all the categories that we shall
consider, inverse limits exist.

Proposition 8.10. Let (Xi, fij) be an inverse system of Hausdorff topological spaces. Then
X := lim←−Xi is a closed subset of

∏
Xi, and if the Xi are compact then X is compact.

Proof. The set X is the intersection of the sets Yij := {x ∈
∏
Xi : xi = fij(xj)} with i ≤ j,

each of which can be written as Yij =
∏
k 6=i,j Xk × Zij , where Zij is the preimage of the

diagonal ∆i := {(xi, xi) : xi ∈ Xi} ⊆ Xi×Xi under the continuous map Xi×Xj → Xi×Xi

defined by (xi, xj) 7→ (xi, fij(xj)). Each ∆i is closed in Xi ×Xi (because Xi is Hausdorff),
so each Zij is closed in Xi×Xj , and each Yij is closed in

∏
Xi; it follows that X is a closed

subset of
∏
Xi. By Tychonoff’s theorem [1, Thm. I.9.5.3], if the Xi are compact then so is

their product
∏
Xi, in which case the closed subset X is also compact.

8.2 Valuation rings in complete fields

We now want to specialize to absolute values derived from a discrete valuation v : K× � Z.
If we pick a positive real number c < 1 and define |x|v := cv(x) for x ∈ K× and |0|v = 0
then we obtain a nontrivial nonarchimedean absolute value | |v. Different choices of c yield
equivalent absolute values and thus do not change the topology induced by | |v or the
completion K̂ of K with respect to | |v. We will see later that there is a canonical choice
for c when the residue field k of the valuation ring of K is finite (one takes c = 1/#k).

It follows from our discussion that the valuation ring

Â := {x ∈ K̂ : v(x) ≥ 0} = {x ∈ K̂ : |x|v ≤ 1}

is a closed (and therefore open) ball in K̂, and it is equal to the closure in K̂ of the valuation
ring A of K. Note that K̂ is the fraction field of Â, since we have x ∈ K̂ − Â if and only if
1/x ∈ Â; so rather than defining Â as the valuation ring of K̂ we could equivalently define
Â as the completion of A (with respect to | |v) and then define K̂ as its fraction field.

We now give another characterization of Â as an inverse limit.

Proposition 8.11. Let K be a field with absolute value | |v induced by a discrete valua-
tion v, let A be the valuation ring of K, and let π be a uniformizer. The valuation ring
of the completion of K with respect to | |v is a complete discrete valuation ring Â with
uniformizer π, and we have an isomorphism of topological rings

Â ' lim←−
n→∞

A

πnA
.
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It is clear that Â is a complete DVR with uniformizer π: it is complete because it is
closed and therefore contains all its limit points in the complete field K̂, it is a DVR with
uniformizer π because v extends to a discrete valuation on Â with v(π) = 1.

Before proving the main part of the proposition, let us check that we understand the
topology of the inverse limit X := lim←−nA/π

nA. The valuation ring A is a closed ball B≤1(0)
(hence an open set) in the nonarchimedean metric space K, and this also applies to each of
the sets πnA (they are closed balls of radius cn about 0). Each quotient A/πnA therefore
has the discrete topology, since the inverse image of any point under the quotient map
is a coset of the open subgroup πnA. The inverse limit X is a subspace of the product
space

∏
nA/π

nA, whose open sets project onto A/πnA for all but finitely many factors
(by definition of the product topology). It follows that every proper open subset U of X
is the full inverse image (under the canonical projection maps given by the inverse limit
construction) of a subset of A/πmA for some m ≥ 1: if m 6= 1 then it is the largest m for
which the projection of U in A/πmA is not the full inverse image of the projection of U to
A/πm−1A. When this set is a point we can describe U as a coset a+ πmA, for some a ∈ A;
as a subset U =

∏
n Un of

∏
nA/π

nA each Un is the image of a+ πmA under the quotient
map A→ A/πnA. In general, U is a union of such sets (all with the same m).

We can alternatively describe the topology on X in terms of an absolute value: for
nonzero x = (xn) ∈ X = lim←−nA/π

nA, let v(x) be the least n ≥ 0 for which xn+1 6= 0, and

define |x|v := cv(x). If we embed A in X in the obvious way (a 7→ (ā, ā, ā, . . .)), the absolute
value on X restricts to the absolute value | |v on A, and the subspace topology A inherits
from X is the same as that induced by | |v. The open sets of X are unions of open balls
B<r(a), where we can always choose a ∈ A (because A is dense in X). If we let m ≥ 0 be
the least integer for which cm < r, where c ∈ {0, 1} is the constant for which |x| = cv(x) for
all x ∈ A, then B<r(a) corresponds to a coset a+ πmA as above

Let us now prove the proposition.

Proof. The ring Â is complete and contains A. For each n ≥ 1 we define a ring homomor-
phism φn : Â→ A/(πn) as follows: for each â = [(ai)] let φn(â) be the limit of the eventually
constant sequence (ai) of images of ai in A/(πn). We thus obtain an infinite sequence of
surjective maps φn : Â → A/πnA that are compatible in that for all n ≥ m > 0 and all
a ∈ Â the image of φn(a) in A/πmA is φm(a). This defines a surjective ring homomorphism
φ : Â→ lim←−A/π

nA. Now note that

kerφ =
⋂
n≥1

πnÂ = {0}, (1)

so φ is injective and therefore an isomorphism. To show that φ is also a homeomorphism, it
suffices to note that if a+ πmA is a coset of πmA in A and U is the corresponding open set
in lim←−A/π

nA, then φ−1(U) is the closure of a+ πmA in Â, which is the coset a+ πmÂ, an

open subset in Â (as explained in the discussion above, every open set in the inverse limit
corresponds to a finite union of cosets a+ πmA for some m). Conversely φ maps open sets
a+ πmÂ to open sets in lim←−A/π

nA.

Remark 8.12. Given any ring R with an ideal I, one can define the I-adic completion
of R as the inverse limit of topological rings R̂ := lim←−nR/I

n, where each R/In is given the
discrete topology. Proposition 8.11 shows that when R is a DVR with maximal ideal m,
taking the completion of R with respect to the absolute value | |m is the same thing as taking
the m-adic completion. This is not true in general. In particular, the m-adic completion of
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a (not necessarily discrete) valuation ring R with respect to its maximal ideal m need not
be complete (either in the sense of Definition 8.1 or in the sense of being isomorphic to its
m-adic completion). The key issue that arises is that the kernel in (1) need not be trivial;
indeed, if m2 = m (which can happen) it certainly won’t be. This problem does not occur
for valuation rings that are noetherian, but these are necessarily DVRs.

Example 8.13. Let K = Q and let v = vp be the p-adic valuation for some prime p and let
|x|p := p−vp(x) denote the corresponding absolute value. The completion of Q with respect
to | |p is the field Qp of p-adic numbers. The valuation ring of Q corresponding to vp is the
local ring Z(p). Taking π = p as our uniformizer, we get

Ẑ(p) ' lim←−
n→∞

Z(p)

pnZ(p)
' lim←−

n→∞

Z
pnZ

= Zp,

the ring of p-adic integers.

Example 8.14. Let K = Fq(t) be the rational function field over a finite field Fq and let
v = vt be the t-adic valuation and let |x|t := q−vt(x) be the corresponding absolute value.
with uniformizer π = t The completion of Fq(t) with respect to | |t is isomorphic to the
field Fq((t)) of Laurent series over Fq. The valuation ring of Fq(t) with respect to vt is the
local ring Fq[t](t) consisting of rational functions whose denominators have nonzero constant
term. Taking π = t as our uniformizer, we get

F̂q[t](t) ' lim←−
n→∞

Fq[t](t)

tnFq[t](t)
' lim←−

n→∞

Fq[t]

tnFq[t]
' Fq[[t]],

where Fq[[t]] denotes the power series ring over Fq.

Example 8.15. The isomorphism Zp ' lim←−Z/pnZ gives us a canonical way to represent
elements of Zp: we can write a ∈ Zp as a sequence (an) with an+1 ≡ an mod pn, where each
an ∈ Z/pnZ is uniquely represented by an integer in [0, pn − 1]. In Z7, for example:

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)

While this representation is canonical, it is also redundant. The value of an constrains
the value of an+1 to just p possible values among the pn+1 elements of Z/pn+1Z, namely,
those that are congruent to an modulo pn. We can always write an+1 = an + pnbn for some
bn ∈ [0, p− 1], namely, bn = (an+1 − an)/pn.

Definition 8.16. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (an+1 − an)/pn

is called the p-adic expansion of a.
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Proposition 8.17. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = b0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 8.18. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)

5
√

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, use Zp(7). By default Sage uses 20 digits of p-adic precision, but you can
change this to n digits using Zp(p,n).

Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand (or in Sage)
using the standard schoolbook algorithm for multiplying integers represented in base 10,
except now one works in base p. For more background on p-adic numbers, see [2, 3, 4, 5].
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