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7 Galois extensions, Frobenius elements, the Artin map

In our standard AKLB setup the finite extension L/K is separable but not necessarily
normal. We now add the additional hypothesis that L/K is normal so that L/K is a Galois
extension, and let G := Gal(L/K) denote the Galois group. We will use the shorthand
AKLBG to denote this setup.

7.1 Splitting primes in Galois extensions

We begin by showing that the Galois group G acts on the ideal group of B.

Theorem 7.1. Assume AKLBG. Then G acts on the ideal group IB of B via

σ(I) = {σ(x) : x ∈ I}.

This action commutes with the group operation in IB and permutes the primes of B.

Proof. Let σ ∈ G. We first show σ(B) = B: each b ∈ B is integral over A, hence the
root of some monic polynomial f ∈ A[x] ⊂ K[x] whose coefficients are fixed by σ. We have
f(b) = 0, thus σ(f(b)) = f(σ(b)) = 0 and σ(b) ∈ L is integral over A and therefore lies in B,
the integral closure of A in L; this proves σ(B) ⊆ B. By the same argument, σ−1(B) ⊆ B,
so B ⊆ σ(B) and therefore σ(B) = B.

Now let I be an ideal of B. Then σ(I) ⊆ σ(B) = B. The set σ(I) is closed under
addition, since σ is a field automorphism, and if a ∈ I and b ∈ B then σ−1(b) ∈ B and
σ−1(b)a ∈ I, thus bσ(a) ∈ σ(I). It follows that σ(I) is an ideal of B, and we note that
σ(I) = (0) if and only if I = (0).

Each nonzero fractional ideal has the form xI for some x ∈ L× and nonzero ideal I. We
have σ(xI) = σ(x)σ(I), which is a nonzero fractional ideal of B, since σ(x) ∈ L× and σ(I)
is an ideal. Thus each σ ∈ G permutes the set IB. The identity automorphism clearly acts
trivially, and for any σ, τ ∈ G and I ∈ IB we have

(στ)(I) = {(στ)(x) : x ∈ I} = {σ(τ(x)) : x ∈ I} = {σ(y) : y ∈ τ(I)} = σ(τ(I)),

thus the group G acts on the set IB.
Now let I, J ∈ IB and σ ∈ G. We have x = a1b1 + · · ·+ anbn with the ai ∈ I and bi ∈ J

if and only if σ(x) = σ(a1)σ(b1) + · · ·+ σ(an)σ(bn). It follows that σ(IJ) = σ(I)σ(J). The
action of G thus commutes with the group operation in IB.

If I =
∏
i q
ei
i is the unique factorization I ∈ IB, then σ(I) =

∏
i σ(qi)

ei is the unique
factorization of σ(I). In particular, if q is a prime of B the unique factorization of σ(q) is
just σ(q), hence σ(q) is also a prime of B.

Corollary 7.2. Assume AKLBG, and let p be a nonzero prime of A. Then G acts tran-
sitively on the set {q|p} of primes q of B that lie above p.

Proof. Let σ ∈ G. For q|p we have pB ⊆ q and σ(pB) ⊆ σ(q), thus σ(q)|p and G acts on the
set {q|p}. To show the action is transitive, let q1 and q1 be two primes lying above p, and
suppose for the sake of contradiction that σ(q) 6= q‘ for all σ ∈ G. Let {q|p} = {q1, . . . , qn}.
The CRT gives a ring isomorphism

B

q1 · · · qn
' B

q1
× · · · × B

qn
,
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and we may choose b ∈ q‘ such that b ≡ 1 mod σ−1(q) for all σ ∈ G. Then

a = NL/K(b) =
∏
σ∈G

σ(b) ≡ 1 mod q,

so a 6∈ q, and a 6∈ A ∩ q = p. But a = NL/K(b) ∈ NL/K(q′) = pfq′ ⊆ p, a contradiction.

Corollary 7.3. Assume AKLBG and let p be a nonzero prime of A. The residue field
degree fq = [B/q : A/p] and ramification index eq = vq(pB) are the same for every q|p.

Proof. For each σ ∈ G we have σ(B) = B, so σ restricts to an isomorphism of B and for
each q|p induces an isomorphism

σ : B/q
∼−→ B/σ(q).

It follows that fq = fσ(q), and since G acts transitively on {q|p}, all the fq must be equal.
For each σ ∈ G we also have σ(p) = p (since p ⊆ A ⊆ K) and σ(B) = B, so σ(pB) = pB.

For each q|p we have

eq = vq(pB) = vq(σ(pB))) = vq
(
σ
(∏
r|p

rer
))

= vq
(∏
r|p

σ(r)er
)

= vq
(∏
r|p

r
eσ−1(r)

)
= eσ−1(q),

and since G acts transitively on {q|p} all the eq must be equal.

The corollary implies that whenever L/K is Galois, we may unambiguously write ep
and fp instead of eq and fq. We also define gp = #{q|p}.

Corollary 7.4. Assume AKLBG. For each prime p of A we have epfpgp = [L : K].

Proof. This follows immediately from Theorem 5.31 and Corollary 7.3.

Example 7.5. Assume AKLBG. When n := [L :K] is prime there are just three possibil-
ities for the factorization of each prime p of A:

• ep = n and fp = gp = 1, in which case p is totally ramified;

• fp = n and ep = gp = 1, in which case p is inert;

• gp = n and ep = fp = 1, in which case p splits completely.

7.2 Decomposition and inertia groups

Definition 7.6. Assume AKLBG and let q be a nonzero prime of B. The decomposition
group (of q) is the stabilizer of q in G, denoted Dq = Dq(L/K).

Lemma 7.7. Assume AKLBG and let p be a nonzero prime of A. The decomposition
groups Dq for q|p are all conjugate and have order epfp and index gp in G.

Proof. For any group action, points in the same orbit have conjugate stabilizers. The stabi-
lizers Dq are all conjugate because the primes q|p all lie in the same orbit (by Corollary 7.2).
By the orbit stabilizer theorem, [G : Dq] = #{q|p} = gp, and since |G| = [L : K] = epfpgp,
we have |Dq| = |G|/[G : Dq] = epfp.
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Let us now fix a prime q of B lying above p = q∩A. For each σ ∈ G we have σ(B) = B,
and if σ ∈ Dq then we also have σ(q) = q, in which case σ induces a field automorphism σ
of the residue field B/q. Since σ fixes p ⊆ A ⊆ K, the automorphism σ fixes the subfield
A/p of B/q. The map σ 7→ σ defines a group homomorphism πq : Dq → AutA/p(B/q): it
clearly preserves the identity, and for any a ∈ B with image ā in B/q we have

στ(ā) = στ(a) = σ(a)τ(a) = σ(a) τ(a) = σ(ā)τ(ā).

In order to lighten the notation, we may use κ(p) := A/p and κ(q) := B/q to denote
the residue fields of p and q, respectively.

Proposition 7.8. Assume AKLBG. Let q be a prime of B lying above p = A ∩ q. The
residue field extension κ(q)/κ(p) is normal and the homomorphism πq : Dq → Autκ(p)(κ(q))
defined by πq(σ) = σ is surjective.

Proof. Let F be the separable closure of κ(p) in κ(q), so that restriction to F induces an
isomorphism Autκ(p)(κ(q))

∼→ Gal(F/κ(p)). Since F is a finite separable extension of κ(p),
it is simple, generated by some α ∈ F×. Let us now pick a ∈ B such that a ≡ α mod q and
a ≡ 0 mod σ−1(q) for all σ ∈ G−Dq ; such an a exists by the CRT. Now define

g(x) :=
∏
σ∈G

(
x− σ(a)

)
∈ A[x],

and let g denote the image of g in κ(p)[x]. For each σ ∈ G − Dq the image of σ(a) in
B/q = κ(q) is 0 (by construction), so 0 is a root of g with multiplicity m = #(G − Dq).
The remaining roots are σ(α) for σ ∈ Dq, which are all Galois conjugates of α. It follows
that g(x)/xm divides the minimal polynomial of α, but the minimal polynomial of α is
irreducible in κ(p)[x], so g(x)/xm is the minimal polynomial of α, and every conjugate of
α is of the form σ(α) for some σ ∈ Dq. Thus Dq surjects onto Gal(F/κ(p)) ' Autκ(p)(κ(q))
and πq is surjective.

To show that κ(q) is a normal extension of κ(p) it suffices to show that each a ∈ κ(q)
is the root of a monic polynomial in κ(p)[x] that splits completely in κ(q)[x]. So fix a ∈ B,
define g ∈ A[x] and g ∈ κ(p)[x] as above. Then a is a root of the monic polynomial g, which
splits completely in κ(q)[x] as desired.

Definition 7.9. Assume AKLBG, and let q be a prime of B lying above p = A ∩ q. The
inertia group Iq = Iq(L/K) is the kernel of the homomorphism πq : Dq → Autκ(p)(κ(q)).

Corollary 7.10. Assume AKLBG and let q be a prime of B lying above p = A ∩ q. We
have an exact sequence of groups

1 −→ Iq −→ Dq −→ Autκ(p)(κ(q)) −→ 1,

and |Iq| = ep[κ(q) : κ(p)]i.

For the sake of convenience, let us now assume that κ(q) is a separable extension of κ(p);
this holds, for example, whenever κ(p) is finite, which includes the main case we care about,
in which K is a global field (a number field or a function field). Under this assumption κ(q)
is a Galois extension of κ(p), and we have

Dq/Iq ' Autκ(p)(κ(q)) = Gal(κ(q)/κ(p)).
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Proposition 7.11. Assume AKLBG, let q be a prime of B lying above p = A ∩ q, and
assume that κ(q) := B/q is a separable extension of κ(p) := A/p. We then have the tower
of field extensions K ⊆ LDq ⊆ LIq ⊆ L with degrees

ep = [L : LIq ] = |Iq|;
fp = [LIq : LDq ] = |Dq/Iq|;
gp = [LDq : K] = #{q|p}.

The fields LDq and LIq are the decomposition field and inertia field associated to q.

Proof. The third statement follows immediately from Lemma 7.7 and [L : K] = epfpgp. The
second follows from Proposition 7.8 and the assumption that κ(q)/κ(/p) is separable, since
Dq/Iq ' Gal(κ(q)/κ(p) has cardinality fp = [κ(q) : κ(p)]. Then [L : LDq ] = |Dq| = epfp and
|Dq| = |Iq| · |Dq/Iq| imply the third.

We now consider an intermediate field E lying between K and L. Let us fix a prime q
of B lying above p := q ∩K, and let qE := q ∩ E, so that q|qE and qE |p. Let κ(p), κ(qE),
κ(q) be the residue fields of p, qE , q, respectively, and define Gq(L/K) := Autκ(p)(κ(q)),

Gq(L/E) := Autκ(qE)(κ(q)), GqE (E/K) := Autκ(p)(κ(qE)).

Proposition 7.12. Assume AKLBG, let E be an intermediate field between K and L.
Let q be a nonzero prime of B and let qE = q ∩ E and p = q ∩K. Then

Dq(L/E) = Dq(L/K) ∩Gal(L/E) and Iq(L/E) = Iq(L/K) ∩Gal(L/E).

If E/K is Galois, then we have the following commutative diagram of exact sequences:

1 1 1

1 Iq(L/E) Iq(L/K) IqE (E/K) 1

1 Dq(L/E) Dq(L/K) DqE (E/K) 1

1 Gq(L/E) Gq(L/K) GqE (E/K) 1

1 1 1

←→ ←→ ←→

←→ ←→

←→

←→

←→
←→

←→

←→ ←→

←→

←→

←→

←→

←→
←→ ←→

←→

←→

←→

←→

←→

Proof. Note that Dq(L/E) ⊆ Gal(L/E) ⊆ Gal(L/K). An element σ of Gal(L/K) lies in
Dq(L/E) if and only if it fixes E (hence lies in Gal(L/E)) and satisfies σ(q) = q (hence
lies in Dq(L/K)). For the second claim, the restriction of πq(L/K) : Dq(L/K)→ Gq(L/K)
to Dq(L/E) is precisely the map πq(L/E) : Dq(L/E) → Gq(L/E), hence the kernels agree
after intersecting with Gal(L/E).

The exactness of the columns follows from Corollary 7.10; we now argue exactness of
the rows. Each row corresponds to an inclusion followed be a restriction in which the
inclusion is precisely the kernel of the restriction (for the first two rows this follows from the
two claims proved above and for the third row it follows from the main theorem of Galois
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theory); exactness as the first two groups in each row follows. Surjectivity of the restriction
maps follows from the bijection used in the proof of Lemma 4.10. We have a bijection
HomK(L,Ω)→ HomE(L,Ω)×HomK(E,Ω) whose second factor is restriction, and we may
view this as a bijection φ : Gal(L,K)→ Gal(L/E)×Gal(E/K). If σ ∈ Gal(E/K) stabilizes
qE then φ−1(1, σ) ∈ Gal(L/K) stabilizes q and restricts to σ; this implies surjectivity of
the restriction maps in the first two rows, and for the third we replace L/E/K with the
corresponding tower of residue field extensions (and forget about stabilizing qE).

We now argue commutativity of the four corner squares (this implies commutativity of
the whole diagram). The upper left square commutes because all the maps are inclusions.
The upper right square commutes because inclusion and restriction commute. The lower
left square commutes because the horizontal maps are inclusions and the vertical maps
coincide on Dq(L/E). In the lower right square the horizontal maps are restrictions and
the vertical maps agree after restriction to E.

7.3 Frobenius elements

We now add the further assumption that the residue fields A/p (and therefore B/q) are
finite for all primes p of K (if any are finite, they all must be). This holds, for example,
whenever K is a global field (a finite extension of Q or Fq(t)). In this situation B/q is
necessarily a Galois extension of A/p: finite fields are perfect, so the extension is separable,
and we proved in the previous lecture that the residue field extension is always normal
(whether the residue fields are separable/finite or not); see Proposition 7.8.

In order to simplify the notation, when working with finite residue fields we may write
Fq := B/q and Fp := A/p. These are finite fields of p-power order, where p is the character-
istic of Fp (and of Fq). There are two distinct possibilities, depending on the characteristic
of K. If K has characteristic 0 (as when K is a number field), its characteristic differs from
the residue field characteristic, which may vary with p but is necessarily nonzero because
A/p is finite; this is as a mixed characteristic setting. If K has positive characteristic p (as
when K is a global function field), the residue fields necessarily have the same characteristic
(the ring homomorphism A→ A/p sends 1 to 1, and if 1 + · · ·+ 1 = 0 in A ⊆ K, the same
holds in A/p); this is an equal characteristic setting.

Let p be a prime of K and let q|p be a prime of L lying above p. Corollary 7.10 gives
us an exact sequence

1 −→ Iq −→ Dq
πq−→ Gal(Fq/Fp) −→ 1.

If p (equivalently, q) is unramified, then ep = eq = 1 and Iq is trivial. In this case we have
an isomorphism

πq : Dq
∼−→ Gal(Fq/Fp).

The Galois group Gal(Fq/Fp) is the cyclic group of order fp = [Fq : Fp] generated by the
Frobenius automorphism

x 7→ x#Fp .

Note that the cardinality #Fp of the finite field Fp is necessarily a power of its charac-
teristic p. If K = Q and p = (p) is a prime of Z, then Fp = Z/pZ is the field with p
elements.

Definition 7.13. Assume AKLBG with finite residue fields and q|p unramified. The
inverse image of the Frobenius automorphism of Gal(Fq/Fp) under πq : Dq

∼−→ Gal(Fq/Fp)
is the Frobenius element σq ∈ Dq ⊆ G (also called the Frobenius substitution [1, §8]).
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Proposition 7.14. Assume AKLBG with finite residue fields and q|p unramified. The
Frobenius element σq is the unique σ ∈ G such that for all x ∈ B we have

σ(x) ≡ x#Fp mod q.

Proof. Clearly σq has this property, we just need to show uniqueness. Suppose σ ∈ G has the
desired property. For any x ∈ q we have σ(x) ≡ x#Fp ≡ 0#Fp ≡ 0 mod q, thus σ(x) ∈ q; it
follows that σ(q) = q, and therefore σ ∈ Dq. The isomorphism πq : Dq → Gal(Fq/Fp) maps
both σ and σq to the Frobenius automorphism x 7→ x#Fp , hence they must be equal.

Proposition 7.15. Assume AKLBG with finite residue fields and q|p unramified. For all
q′|p the Frobenius elements σq and σq′ are conjugate in G.

Proof. By Corollary 7.2, G acts transitively on {q|p}, so let τ ∈ G be such that q′ = τ(q).
For any x ∈ B we have

σq(x) ≡ x#Fp mod q.

τ(σq(x)) ≡ τ
(
x#Fp

)
mod τ(q)

(τσq)(x) ≡ τ(x)#Fp mod q′

(τσq)(τ
−1(x)) ≡ τ(τ−1(x))#Fp mod q′

(τσqτ
−1)(x) ≡ x#Fp mod q′,

where we applied τ to both sides in the second line and replaced x by τ−1(x) in the fourth
line. The uniqueness of σq′ given by Proposition 7.14 implies σq′ = τσqτ

−1.

Definition 7.16. Assume AKLBG with finite residue fields and q|p unramified. The
conjugacy class of the Frobenius element σq ∈ G is the Frobenius class of p, denoted Frobp.

It is common to abuse terminology and refer to Frobp as a Frobenius element σp ∈ G
representing its conjugacy class (so σp = σq for some q|p); there is little risk of confusion
so long as we remember that σp is only determined up to conjugacy (which usually governs
all the properties we care about). There is, however, one situation where this terminology
is entirely correct. If G is abelian then its conjugacy classes all consist of a single element,
in which we case Frobp = {σq : q|p} is a singleton set and there is a unique choice for σp.

7.4 Artin symbols

There is another notation commonly used to denote Frobenius elements that includes the
field extension in the notation.

Definition 7.17. Assume AKLBG with finite residue fields. For each unramified prime q
of L we define the Artin symbol (

L/K

q

)
:= σq.

Proposition 7.18. Assume AKLBG with finite residue fields and q|p unramified. Then p

splits completely if and only if
(
L/K
q

)
= 1.

Proof. This follows directly from the definitions: if p splits completely then epfp = 1 and
Dq = 〈σq〉 = {1}. Conversely, if Dq = 〈σq〉 = {1} then epfp = 1 and p splits completely.
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We will see later in the course that the extension L/K is completely determined by the
set of primes p that split completely in L. Thus in some sense the Artin symbol captures
the essential structure of L/K.

Proposition 7.19. Assume AKLBG with finite residue fields and let q|p be unramified.
Let E be an intermediate field between K and L, and define qE := q ∩ E. Then(

L/E

q

)
=

(
L/K

q

)[FqE
:Fp]

,

and if E/K is Galois then
(
E/K
qE

)
is the restriction of

(
L/K
q

)
to E.

Proof. For the first claim, note that #FqE = (#Fp)
[FqE

:Fp]. The second claim follows from
the commutativity of the lower right square in the commutative diagram of Proposition 7.12:
the Frobenius automorphism x 7→ x#Fp of Gal(FqE/Fp) is the restriction of the Frobenius
automorphism x 7→ x#Fp of Gal(Fq/Fp) to FqE .

When L/K is abelian, the Artin symbol takes the same value for all q|p and we may
instead write (

L/K

p

)
:= σp := σq,

where q is any primve above p. In this setting we now view the Artin symbol as a function
mapping unramified primes p to Frobenius elements σp ∈ G. We wish to extend this map to
a multiplicative homomorphism from the ideal group IA to the Galois group G = Gal(L/K),
but ramified primes q|p cause problems: the homomorphism πq : Dq → Gal(Fq/Fp) is not a
bijection when p is ramified (it has nontrivial kernel Iq of order eq = ep > 1).

For any set S of primes of A, let ISA denote the subgroup of IA generated by the primes
of A that do not lie in S.

Definition 7.20. Let A be a Dedekind domain with finite residue fields. Let L be a finite
abelian extension of K = FracA, and let S be the set of primes of A that ramify in L. The
Artin map is the homomorphism(

L/K

·

)
: ISA → Gal(L/K)

m∏
i=1

peii 7→
m∏
i=1

(
L/K

pi

)ei
.

Remark 7.21. We will prove in later lectures that the set S of ramified primes is finite,
but the definition makes sense in any case.

One of the main results of class field theory is that the Artin map is surjective (this is
part of what is known as Artin reciprocity). This is a deep theorem that we are not yet
ready to prove, but we can verify that it holds in some simple examples.

Example 7.22 (Quadratic fields). Let K = Q and L = Q(
√
d) for some square-free integer

d 6= 1. Then Gal(L/K) has order 2 and is certainly abelian. As you proved on Problem Set
2, the only ramified primes p = (p) of A = Z are those that divide the discriminant

D := disc(L/K) =

{
d if d ≡ 1 mod 4,

4d if d 6≡ 1 mod 4.
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If we identify Gal(L/K) with the multiplicative group {±1}, then(
L/K

p

)
=

(
Q(
√
d)/Q

(p)

)
=

(
D

p

)
= ±1,

where (Dp ) is the Kronecker symbol. For odd primes p 6 | D we have

(
D

p

)
=

{
+1 if D is a nonzero square modulo p,

−1 if D is not a square modulo p,

and for p = 2 not dividing D (in which case D = d ≡ 1 mod 4) we have(
D

2

)
=

{
+1 if D ≡ 1 mod 8,

−1 if D ≡ 5 mod 8.

The cyclotomic extensions Q(ζn)/Q provide another interesting example that you will
have an opportunity to explore on Problem Set 4.
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