
18.785 Number theory I
Lecture #26

Fall 2016
12/13/2016

26 Global class field theory, the Chebotarev density theorem

Recall that a global field is a field with a product formula whose completions at nontrivial
absolute values are local fields. As proved on Problem Set 7, every such field is one of the
following:

• number field : finite extension of Q (characteristic zero);

• global function field : finite extension of Fq(t) (positive characteristic).

An equivalent characterization of a global function field is that it is the function field of a
smooth projective geometrically integral curve over a finite field.

In Lecture 23 we defined the adele ring AK of a global field K as the restricted product

AK :=
∐∏

v
(Kv,Ov) =

{
(av) ∈

∏
Kv : av ∈ Ov for almost all v

}
,

where v ranges over the places of K (equivalence classes of absolute values), Kv denotes the
completion ofK at v (a local field), andOv is the valuation ring ofKv if v is nonarchimedean,
and Ov := Kv otherwise. As a topological ring, AK is locally compact and Hausdorff. The
field K is canonically embedded in AK via the diagonal map x 7→ (x, x, x, . . .) whose image
is discrete, closed, and cocompact; see Theorem 23.12.

In Lecture 24 we defined the idele group

IK :=
∐∏

(K×v ,O×v ) =
{

(av) ∈
∏

K×v : av ∈ O×v for almost all v
}
,

which coincides with the unit group of AK as a set but has a finer topology (using the
restricted product topology ensures that a 7→ a−1 is continuous, which is not true of the
subspace topology). As a topological group, IK is locally compact and Hausdorff. The
multiplicative group K× is canonically embedded as a discrete subgroup of IK via the
diagonal map x 7→ (x, x, x, . . .), and the idele class group is the quotient CK := IK/K×,
which is locally compact but not compact.

26.1 The idele norm

The idele group IK surjects onto the ideal group IK of invertible fractional ideals of OK
via the surjective homomorphism

ϕ : IK → IK
a 7→

∏
pvp(a),

where vp(a) is the p-adic valuation of the component av ∈ K×v of a = (av) ∈ IK at the
place v corresponding to the absolute value ‖x‖v = N(p)−vp(x) induced by the discrete
valuation vp : Kv → Z; here N(p) := OK/p is the absolute norm of p. We have the following
commutative diagram of exact sequences:

1 K× IK Ck 1

1 PK IK Clk 1

←→ ←→

←� x 7→(x)

←→

←� ϕ

←→

←�

←→ ←→ ←→ ←→

where PK is the subgroup of principal ideals and ClK := IK/PK is the ideal class group.
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Definition 26.1. Let L/K is a finite separable extension of global fields. The idele norm
NL/K : IL → IK is defined by NL/K(bw) = (av), where each

av :=
∏
w|v

NLw/Kv
(bw)

is a product over places w of L that extend the place v of K and NLw/Kv
: Lw → Kv is the

field norm of the corresponding finite separable extension of local fields Lw/Kv.

It follows from Corollary 11.21 and Remark 11.22 that the idele norm NL/K : IL → IK
agrees with the field norm NL/K : L× → K× on the subgroup of principal ideles L× ⊆ IL.
The field norm is also compatible with the ideal norm NL/K : IL → IK (see Proposition 6.5),
and we thus obtain the following commutative diagram

L× IL IL

K× IK IK

←→
←→ NL/K

←→

←→ NL/K ←→ NL/K

←→ ←→

The image of L× in IL under the composition of the maps on the top row is precisely the
group PL of principal ideals, and the image of K× in IK is similarly PK . Taking quotients
yields induced norm maps on the idele and ideal class groups, both of which we also denote
NL/K , and we obtain the commutative diagram:

CL ClL

CK ClK

←�

←→ NL/K ←→ NL/K

←�

26.2 The Artin homomorphism

We now want to use the local Artin homomorphisms we defined in the previous lecture
to construct a global Artin homomorphism. Let us first fix once and for all a separable
closure Ksep of our global field K, and for each place v of K, a separable closure Ksep

v of the
local field Kv. Let Kab and Kab

v denote maximal abelian extensions within these separable
closures. Henceforth all abelian extensions of K and the Kv are assumed to lie in these
maximal abelian extensions.

By Theorem 25.2, each local field Kv is equipped with a local Artin homomorphism

θKv : K×v → Gal(Kab
v /Kv),

and for each finite abelian Lw/Kv the map θKv induces (via restriction) a surjective homo-
morphism

θLw/Kv
: K×v → Gal(Lw/Kv)

with kernel NLw/Kv
(L×w). When Kv is nonarchimedean and Lw/Kv is unramified we also

have θLw/Kv
(π) = FrobLw/Kv

for every uniformizer π of Ov.
By Corollary 11.17, we may view Lw as the completion of a finite abelian extension

L/K at a place w extending v (recall that we write w|v to indicate this). If v corresponds
to a prime p of K, then w corresponds to a prime q for which Gal(Lw/Kv) ' Dq, where

18.785 Fall 2016, Lecture #26, Page 2

http://math.mit.edu/classes/18.785/2016fa/LectureNotes11.pdf#theorem.2.21
http://math.mit.edu/classes/18.785/2016fa/LectureNotes11.pdf#theorem.2.22
http://math.mit.edu/classes/18.785/2016fa/LectureNotes6.pdf#theorem.2.5
http://math.mit.edu/classes/18.785/2016fa/LectureNotes25.pdf#theorem.2.2
http://math.mit.edu/classes/18.785/2016fa/LectureNotes11.pdf#theorem.2.17


Dq ⊆ Gal(L/K) is the decomposition group of q (the subgroup of Gal(L/K) fixing q), by
Theorem 11.20. This allows us to define an embedding

Gal(Lw/Kv) ↪→ Gal(L/K)

as follows:

• if v is archimedean then either Lw ' Kv and we identify Gal(Lw/Kv) with the trivial
subgroup of Gal(L/K), or Lw/Kv ' C/R and we identify Gal(Lw/Kv) with the
subgroup of Gal(L/K) generated by complex conjugation (which must be nontrivial).

• if v is nonarchimedean, let q be the prime of L corresponding to the place w and iden-
tify Gal(Lw/Kv) with the decomposition group Dq ⊆ Gal(L/K) via the isomorphism
given by part (6) of Theorem 11.20.

Notice that the embedding Gal(Lw/Kv) ↪→ Gal(L/K) is the same for every w|v: this
is obvious in the archimedean case, and in the nonarchimedean case the decomposition
groups Dq are necessarily conjugate in Gal(L/K), hence equal, since Gal(L/K) is abelian.

For each place v of K we now embed Kv into the idele group IK via the map

K×v ↪→ IK
α 7→ (1, 1, . . . , 1, α, 1, 1, . . .),

whose image intersects K× ⊆ IK trivially. This embedding is compatible with the idele
norm in the following sense: if L/K is any finite separable extension and w is a place of L
that extends the place v of K then the diagram

L×w K×v

IL IK

←→
NLw/Kv

←
↩→ ←

↩→

←→
NL/K

commutes.
Now let L/K be a finite abelian extension. For each place v of K, let us pick a place w

of L extending v and define

θL/K : IK → Gal(L/K)

(av) 7→
∏
v

θLw/Kv
(av),

where the product takes place in Gal(L/K) via the embeddings Gal(Lw/Kv) ↪→ Gal(L/K)
defined above. The value of θLw/Kv

(av) is independent of our choice of w because the
embeddings are the same for every w|v, as noted above. The product is well defined because
av ∈ O×v and v is unramified in L for almost all v, in which case GalLw/Kv

' 〈FrobLw/Kv
〉

and therefore
θLw/Kv

(av) = Frob
v(av)
Lw/Kv

= 1,

since θLw/Kv
(π) = FrobLw/Kv

for any uniformizer π of Ov. It is clear that θL/K is a
homomorphism, since each θLw/Kv

is, and θL/K is continuous because its kernel is a basic
open set

∏
v| discL/K

Uv ×
∏
v-discL/K

O×v of IK .

If L1 ⊆ L2 are two finite abelian extensions of K, then then θL2/K(x)|L1
= θL1/K(x) for

all x ∈ IK . The θL/K form a compatible system of homomorphisms from IK to the inverse
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limit lim←−L Gal(L/K) ' Gal(Kab/K), where L ranges over finite abelian extensions of K

in Kab ordered by inclusion. By the universal property of the profinite completion, they
uniquely determine a continuous homomorphism.

Definition 26.2. Let K be a global field. The global Artin homomorphism is the continuous
homomorphism

θK : IK → lim←−
L⊆Kab

L/Kfinite

Gal(L/K) ' Gal(Kab/K)

defined by the compatible system of homomorphisms θL/K : IK → Gal(L/K).

The isomorphism Gal(Kab/K) ' lim←−Gal(L/K) is the natural isomorphism between a
Galois group and its profinite completion with respect to the Krull topology (Theorem 24.21)
and is thus canonical, as is the global Artin homomorphism θK : IK → Gal(Kab/K).

Proposition 26.3. Let K be global field. The global Artin homomorphism θK is the unique
continuous homomorphism IK → Gal(Kab/K) with the property that for every finite abelian
extension L/K in Kab and every place w of L lying over a place v of K the diagram

K×v Gal(Lw/Kv)

IK Gal(L/K)

←→
θLw/Kv

←
↩→ ←

↩→

←→
θL/K

commutes, where the homomorphism θL/K is defined by θL/K(x) := θK(x)|L.

Proof. That θK has this property follows directly from its construction. Now suppose
θ′K : IK → Gal(Kab/K) has the same property. The idele group IK is generated by the
images of the embeddings K×v , so if θK and θ′K are not identical, then they disagree at a
point a := (1, 1, . . . , 1, av, 1, 1, . . .) in the image of one the embeddings Kv ↪→ IK . We must
have θL/K(a) = θLw/Kv

(av) = θ′L/K(a) for every finite abelian extension L/K in Kab and

every place w of L extending v. This implies that θK(a) = θ′K(a), since the image of a
under any homomorphism to Gal(Kab/K) ' lim←−Gal(L/K) is determined by its images in
the Gal(L/K), by Theorem 24.21 and the universal property of the profinite completion.

26.3 The main theorems of global class field theory

In the global version of Artin reciprocity, the idele class group CK := IK/K× plays the role
that the multiplicative group K×v plays in local Artin reciprocity (Theorem 25.2).

Theorem 26.4 (Global Artin Reciprocity). Let K be a global field. The kernel of the
global Artin homomorphism θK contains K×, and we thus have a continuous homomorphism

θK : CK → Gal(Kab/K),

with the property that for every finite abelian extension L/K in Kab the homomorphism

θL/K : CK → Gal(L/K)

obtained by composing θK with the quotient map Gal(Kab/K) → Gal(L/K) is surjective
with kernel NL/K(CL). and thus induces an isomorphism CK/NL/K(CL) ' Gal(L/K).
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Remark 26.5. When K is a number field, θK is surjective but not injective; its kernel
is the connected component of the identity in CK . When K is a global function field, θK
is injective but not surjective; its image is consists of automorphisms σ ∈ Gal(Kab/K)
corresponding to integer powers of the Frobenius automorphism of Gal(ksep/k), where k is
the constant field of K (this is precisely the dense image of Z in Ẑ ' Gal(ksep/k)).

We also have a global existence theorem.

Theorem 26.6 (Global Existence Theorem). Let K be a global field. For every finite
index open subgroup H of CK there is a unique finite abelian extension L/K inside Kab for
which NL/K(CL) = H.

As with the local Artin homomorphism, taking profinite completions yields an isomor-
phism that allows us to summarize global class field theory in one statement.

Theorem 26.7 (Main theorem of global class field theory). Let K be a global
field. The global Artin homomorphism θK induces a canonical isomorphism

θ̂K : ĈK
∼−→ Gal(Kab/K)

of profinite groups.

We have an inclusion reversing bijection

{ finite index open subgroups H of CK} ←→ { finite abelian extensions L/K in Kab}
H 7→ (Kab)θK(H)

θ−1
K (Gal(Kab/L))←[ L

and corresponding isomorphisms CK/H ' Gal(L/K), where H = NL/K(CL). We also note
that the global Artin homomorphism is functorial in the following sense.

Theorem 26.8 (Functoriality). Let K be a global field and let L/K be any finite sep-
arable extension (not necessarily abelian). Then the following diagram commutes

CL Gal(Lab/L)

CK Gal(Kab/K).

←→θL

←→ NL/K ←→ res

←→θK

26.4 Relation to ideal-theoretic version of global class field theory

Let K be a global field and let m : MK → Z≥0 be a modulus for K, which we view as a
formal product m =

∏
v v

ev over the places v of K with ev ≤ 1 when v is archimedean
and ev = 0 when v is complex (see Definition 21.1). For each place v we define the open
subgroup

Um
K(v) :=


O×v if v 6 | m, where O×v := K×v when v is infinite),

R>0 if v|m is real, where R>0 ⊆ R× ' O×v := K×v ,

1 + pev if v|m is finite, where p = {x ∈ Ov : |x|v < 1},

18.785 Fall 2016, Lecture #26, Page 5

http://math.mit.edu/classes/18.785/2016fa/LectureNotes21.pdf#theorem.2.1


and let Um
K :=

∏
v U

m
K(v) ⊆ IK denote the corresponding open subgroup of IK . The image

U
m
K of Um

K in the idele class group CK = IK/K× is a finite index open subgroup. The idelic
version of a ray class group is the quotient

Cm
K := IK/(Um

K ·K×) = CK/U
m
K ,

and we have isomorphisms

Cm
K ' ClmK ' Gal(K(m)/K),

where ClmK is the ray class group for the modulus m (see Definition 21.2), and K(m) is the
corresponding ray class field, which we can now define as the finite abelian extension L/K
for which NL/K(CL) = U

m
K , whose existence is guaranteed by Theorem 26.6.

If L/K is any finite abelian extension, then NL/K(CL) contains U
m
L for some modulus m;

this follows from the fact that the groups U
m
L form a fundamental system of open neighbor-

hoods of the identity. Indeed, the conductor of the extension L/K (see Definition 22.18) is
precisely the minimal modulus m for which this is true. It follows that every finite abelian
extension L/K lies in a ray class field K(m) with Gal(L/K) isomorphic to a quotient of a
ray class group Cm

K .

26.5 The Chebotarev density theorem

We now give a proof of the Chebotarev density theorem, a generalization of the Frobenius
density theorem you proved on Problem Set 10. Recall from Lecture 17 (and Problem Set 9)
that if S is a set of primes of a global field K, the Dirichlet density of S is defined by

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

whenever this limit exists. As you proved on Problem Set 9, if S has a natural density then
it has a Dirichlet density and the two coincide (and similarly for polar density). A subset
C of a group is said to be stable under conjugation if στσ−1 ∈ C for all σ ∈ G and τ ∈ C.

Theorem 26.9 (Chebotarev density theorem). Let L/K be a finite Galois extension
of number fields with Galois group G := Gal(L/K). Let C ⊆ G be stable under conjugation,
and let S be the set of primes p of K unramified in L with Frobp ⊆ C. Then d(S) = #C/#G.

Note that G is not assumed to be abelian, so Frobp is a conjugacy class. However, the
main difficulty in proving the Chebotarev density theorem (and the only place where class
field theory is actually needed) occurs when G is abelian in which case Frobp contains a
single element. The main result we need is the generalization of Dirichlet’s theorem on
primes in arithmetic progressions to number fields, which we proved in Lecture 22, subject
to the existence of ray class fields, which for convenience we now assume.1

Proposition 26.10. Let m be a modulus for a number field K and let ClmK be the corre-
sponding ray class group. For every ray class c ∈ ClmK the Dirichlet density of the set of
primes p of K that lie in c is 1/#ClmK .

1This assumption is not necessary; indeed Chebotarev proved his density theorem in 1923 without it.
With slightly more work one can derive the general case from the cyclotomic case L = K(ζ), where ζ is a
primitive root of unity, which removes the need to assume the existence of ray class fields; see [4] for details.
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Proof. This follows from Theorem 26.6, which guarantees that the ray class field K(m)
exists, and Theorem 22.14, Corollary 22.15, and Corollary 22.17, from Lecture 22.

Corollary 26.11. Let L/K be a finite abelian extension of number fields with Galois group
G. For every σ ∈ G the Dirichlet density of the set S of unramified primes p of K for which
Frobp = {σ} is 1/#G.

Proof. Let m = cond(L/K) be the conductor of the extension L/K; then L is a subfield
of the ray class field K(m) and Gal(L/K) ' ClmK/H for some subgroup H of the ray class
group. For each unramified prime p of K we have Frobp = {σ} if and only if p lies in one
of the ray classes contained in the coset of H in ClmK/H corresponding to σ. The Dirichlet
density of the set of primes in each ray class is 1/#ClmK , by Proposition 26.10, and there
are #H ray classes in each coset of H; thus d(S) = #H/#ClmK = 1/#G.

Proof of the Chebotarev density theorem. It suffices to prove the case where C is a single
conjugacy class, since we can reduce to this case by partitioning C into conjugacy classes
and summing Dirichlet densities (as proved on Problem Set 9). If L/K is abelian then
#C = 1 and the theorem follows from Corollary 26.11.

For the general case, let σ be a representative of the conjugacy class C, let H = 〈σ〉 be
the subgroup of G it generates, and let F = LH be the corresponding fixed field. Let T be
the set of primes q of F that are unramified in L for which the Frobenius class Frobq = {σ}
(where Frobq ⊆ Gal(L/F ) ⊆ Gal(L/K)). The extension L/F is abelian with Galois group
H, so d(T ) = 1/#H, by Corollary 26.11. As you proved on Problem Set 9, restricting
to degree-1 primes (primes whose residue field has prime order) does not change Dirichlet
densities, so let us replace S and T by their subsets of degree-1 primes.

Claim: For each prime p ∈ S exactly #G/(#H#C) primes q ∈ T lie above p.
Assuming the claim, we have∑

p∈S
N(p)−s =

#H#C

#G

∑
q∈T

N(q)−s,

since N(q) = N(p) for each degree-1 prime q lying above a degree-1 prime p, and therefore

d(S) =
#H#C

#G
d(T ) =

#C

#G

as desired.
Proof of claim: Let U be the set of primes r of L for which r ∩ K = p ∈ S and

Frobr/p = σ. For each r ∈ U , if we put q := r ∩ F then Frobq = {σ}, and since σ fixes F
it acts trivially on Fq := OF /q, so the residue field extension Fq/Fp is trivial and q ∈ T .
On the other hand, Gal(L/F ) = 〈σ〉 = H, so the residue field extension Fr/Fq has degree
#H, and this implies that r is the only prime of L above q. Conversely, for each q ∈ T ,
every prime r of L above q must have Frobr = σ, hence lie in U , and have residue degree
[Fr : Fq] = #H, hence be the unique prime of L above q.

The sets U and T are thus in bijection, so to count the primes q ∈ T that lie above some
prime p ∈ S it suffices to count the primes r ∈ U that lie above p. The set X of primes
r of L that lie above p has cardinality #G/#H, since the primes #r are all unramified
and have residue degree #H. The transitive action of G on X partitions it into #C orbits
corresponding to the conjugates of σ, each of which has size #G/(#H#C). Each orbit
corresponds to a possible value of Frobr, all of which are conjugate to σ, exactly one of
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which is equal to σ; this orbit is the set of primes r of L above p that lie in U and has
cardinality #G/(#H#C), which proves the claim and completes the proof.

Remark 26.12. The Chebotarev density theorem holds for any global field; the general-
ization to function fields was originally proved by Reichardt [3]; see [2] for a modern proof
(and in fact a stronger result). In the case of number fields (but not function fields!) Cheb-
otarev’s theorem also holds for natural density. This follows from results of Hecke [1] that
actually predate Chebotarev’s work; Hecke showed that the primes lying in any particular
ray class (element of the ray class group) have a natural density.
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