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25 Local class field theory

In this lecture we give a brief overview of local class field theory, following [1, Ch. 1]. Recall
that a local field is a locally compact field whose topology is induced by a nontrivial absolute
value (Definition 9.3). As we proved in Theorem 9.10, every local field is isomorphic to one
of the following:

• R or C (archimedean, characteristic 0);

• finite extension of Qp (nonarchimedean, characteristic 0);

• finite extension of Fq((t)) (nonarchimedean, characteristic p > 0).

In the nonarchimedean cases, the ring of integers of a local field is a complete DVR with
finite residue field.

The goal of local class field theory is to classify all finite abelian extensions of a given
local field K. Rather than considering each finite abelian extension L/K individually, we
will treat them all at once, by fixing once and for all a separable closure Ksep of K and
working in the maximal abelian extension of K inside Ksep.

Definition 25.1. Let K be field with separable closure Ksep. The field

Kab :=
⋃

L ⊆ Ksep

L/K finite abelian

L

is the maximal abelian extension of K (in Ksep).

The field Kab contains the Kunr, the maximal unramified extension of K in Ksep;
this is obvious in the archimedean case, and in the nonarchimedean case it follows from
Theorem 10.16, which implies that Kunr is isomorphic to the algebraic closure of the residue
field, which is abelian because it is pro-cyclic (every finite extension of the residue field is
cyclic because the residue field is finite). We thus have a tower of field extensions

K ⊆ Kunr ⊆ Kab ⊆ Ksep.

The Galois group Gal(Kab/K) is the profinite group

Gal(Kab/K) ' lim←−
L

Gal(L/K),

where L ranges over the finite abelian extensions of K in Ksep, ordered by inclusion. As a
profinite group (like all Galois groups) Gal(Kab/K) is totally disconnected, compact, and
Hausdorff (see Problem Set 11), and we have the Galois correspondence

{extensions of K in Kab} ←→ { closed subgroups of Gal(Kab/K)}
L 7−→ Gal(Kab/L)

(Kab)H ←− [ H,

in which abelian extensions L/K correspond to finite index open subgroups of Gal(Kab/K);
note that since Gal(Kab/K) is abelian, every subgroup of Gal(Kab/K) is normal and it
follows that every subextension of Kab/K is Galois (and abelian).
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When K is an archimedean local field its abelian extensions are easy to understand;
either K = R, in which case C is its only nontrivial abelian extension, or K = C and there
are no nontrivial abelian extensions. Now suppose K is a nonarchimedean local field with
ring of integers OK , maximal ideal p, and residue field Fp := OK/p. If L/K is a finite
unramified extension with residue field Fq := OL/q, Theorem 10.16 gives us a canonical
isomorphism

Gal(L/K) ' Gal(Fq/Fp) = 〈x 7→ x#Fp〉,
between the Galois group of L/K and the Galois group of the residue field extension Fq/Fp.
The group Gal(Fq/Fp) is generated by the Frobenius automorphism x → x#Fp , and we
use FrobL/K ∈ Gal(L/K) to denote the corresponding element of Gal(L/K). Thus each
finite unramified extension of local fields L/K comes equipped with a canonical generator
FrobL/K for its Galois group (and is necessarily cyclic).

25.1 Local Artin reciprocity

Local class field theory is based on the existence of a continuous homomorphism

θK : K× → Gal(Kab/K)

known as the local Artin homomorphism (or local reciprocity map), which is characterized
by the following theorem.

Theorem 25.2 (Local Artin Reciprocity). Let K be a local field. There is a unique
continuous homomorphism

θK : K× → Gal(Kab/K)

with the property that for each finite extension L/K in Kab, the homomorphism

θL/K : K× → Gal(L/K)

given by composing θK with the map Gal(Kab/K) → Gal(L/K) induced by restriction
satisfies:

• if K is nonarchimedean and L/K is unramified then θL/K(π) = FrobL/K for every
uniformizer π of OK ;

• θL/K is surjective with kernel NL/K(L×), inducing K×/NL/K(L×) ' Gal(L/K).

We will not prove this theorem in this course, but we would like to understand what
it says (it says a lot). We first note that the homomorphisms θL/K form a compatible
system, in the sense that if L1 ⊆ L2 then θL1/K is the composition of θL2/K with the
map Gal(L2/K) → Gal(L1/K) induced by restriction. This follows from the fact that
the maps induced by restriction are precisely the maps that define the inverse system
lim←−L Gal(L/K) ' Gal(Kab/K) that determines the structure of Gal(Kab/K) as a profi-
nite group. Of course we can also view the map Gal(L2/K)→ Gal(L1/K) as the quotient
map Gal(L2/K) � Gal(L2/K)/Gal(L2/L1).

It is first worth contrasting local Artin reciprocity with the more complicated global
version of Artin reciprocity that we saw in Lecture 21:

• there is no modulus m to worry about (not even a power of p); working in Kab lets
us treat all abelian extensions of K in one fell swoop;

• there are no ray class groups ClmK involved (the class group of a local field extension
is always trivial); we instead consider quotients quotients of K×;

• the Takagi groupRm
KNL/K(ImK) ⊆ ImK is replaced by the norm group NL/K(L×) ⊆ K×.
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25.2 Norm groups

Definition 25.3. Let K be a local field. A norm group (of K) is a subgroup of the form

N(L×) := NL/K(L×) ⊆ K×,

for some finite abelian extension L/K.

Remark 25.4. In fact, if L/K is any finite extension (not necessarily abelian, not necessar-
ily Galois), then N(L×) = N(F×), where F is the maximal abelian extension of K in L; this
is the Norm Limitation Theorem (see [1, Theorem III.3.5]). So we could have defined
norm groups more generally. This is not relevant to classifying the abelian extension of K,
but it demonstrates a key limitation of local class field theory (which extends to global class
field theory): subgroups of K× contain no information about nonabelian extensions of K.

Local Artin reciprocity implies that the Galois group of any finite abelian extension L/K
of a local fields is canonically isomorphic to the quotient K×/NL/K(L×); thus to order to
understand the finite abelian extensions of a local field K, we just need to understand its
norm groups. In fact, Theorem 25.2 already tells us a quite a lot: in particular, the iso-
morphism K×/N(L×) ' Gal(L/K) implies that [K× :N(L×)] = [L :K] is finite. Moreover,
there is an order-reversing isomorphism between the lattice of norm groups in K× and the
lattice of finite abelian extensions of K; this is essentially the Galois correspondence with
Galois groups replaced by norm groups.

Corollary 25.5. The map L 7→ N(L×) defines an inclusion reversing bijection between the
finite abelian extensions L/K in Kab and the norm groups in K× which satisfies

(a) N((L1L2)×) = N(L×1 ) ∩N(L×2 ) and (b) N((L1 ∩ L2)×) = N(L×1 )N(L×2 ).

Moreover, every subgroup of K× that contains a norm group is a norm group.

Here we write L1L2 for the compositum of L1 and L2 inside Kab (the intersection of all
subfields of Kab that contain both L1 and L2).

Proof. We first note that if L1 ⊆ L2 are two extensions of K then transitivity of the field
norm (Corollary 4.48) implies

NL2/K = NL1/K ◦NL2/L1
,

and therefore N(L×2 ) ⊆ N(L×1 ); thus the map L 7→ N(L×) reverses inclusions.
This immediately implies N((L1L2)×) ⊆ N(L×1 ) ∩ N(L×2 ), since L1, L2 ⊆ L1L2. For the

reverse inclusion, let us consider the commutative diagram

K× Gal(L1L2/K)

Gal(L1/K)×Gal(L2/K)

← →
θL1L2/K

←

→θL1/K
×θL2/K

←
↩→ res×res

By Theorem 25.2, each x ∈ N(L×1 )∩N(L×2 ) ⊆ K× lies in the kernel of θL1/K and θL2/K , hence
in the kernel of θL1L2/K (by the diagram), and therefore in N((L1L2)×) (by Theorem 25.2
again). This proves (a).
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We now show that L 7→ N(L×) is a bijection; it is surjective by definition, so we just
need to show it is injective. If N(L×2 ) = N(L×1 ) then by (a) we have

N((L1L2)×) = N(L×1 ) ∩N(L×2 ) = N(L×1 ) = N(L×2 ),

and Theorem 25.2 implies Gal(L1L2/K) ' Gal(L1/K) ' Gal(L2/K), which forces L1 = L2;
thus L 7→ N(L×) is injective.

We now prove (b). The field L1 ∩ L2 is the largest extension of K that lies in both
L1 and L2, while N(L×1 )N(L×2 ) is the smallest subgroup of K× containing both N(L×1 ) and
N(L×2 ); they therefore correspond under the inclusion reversing bijection L 7→ N(L×) and
we have N((L1 ∩ L2)×) = N(L×1 )N(L×2 ) as desired.

Finally, let us prove that every subgroup of K× that contains a norm group is a norm
group. Suppose N(L×) ⊆ H ⊆ K×, for some finite abelian L/K, and subgroup H of K×,
and put F := LθL/K(H). We have a commutative diagram

K× Gal(L/K)

Gal(F/K)

←→
θL/K

←

→θF/K

←→ res

in which Gal(L/F ) = θL/K(H) is precisely the kernel of the map Gal(L/K) → Gal(F/K)
induced by restriction. It follows from Theorem 25.2 that

H = θ−1
L/K(Gal(L/F )) = N(F×)

is a norm group as claimed.

Lemma 25.6. Let L/K be an extension of local fields. If N(L×) has finite index in K×

then it is open.

Proof. The lemma is clear if K is archimedean, so let us assume it is nonarchimedean.
Suppose [K× : N(L×)] < ∞. The unit group O×L is compact, so N(O×L ) is compact (since
N: L× → K× is continuous) and therefore closed in the Hausdorff space K×. For any
α ∈ L,

α ∈ O×L ⇐⇒ |α| = 1⇐⇒ |NL/K(α)| = 1⇐⇒ NL/K(α) ∈ O×K ,

and therefore
N(O×L ) = N(L×) ∩ O×K .

It follows that N(O×L ) is equal to the kernel of the map O×K ↪→ K× � K×/N(L×) and
therefore [O×K : N(O×L )] ≤ [K× : N(L×)] < ∞. Thus N(O×L ) is a closed subgroup of finite
index in O×K , hence open (its complement is a finite union of closed cosets, hence closed),
and O×K is open in K×, so N(O×L ) is open in K×.1

Remark 25.7. If K is a local field of characteristic zero then one can show that in fact
every finite index subgroup of K× is open (whether it is a norm group or not), but this is
not true in positive characteristic.

1Recall that in a nonarchimedean local field, |K×| is discrete in R>0 and we can always pick ε > 0 so
that O×

K = {x ∈ K× : 1− ε < |x| < 1 + ε}, which is clearly open in the metric topology induced by | |.
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25.3 The main theorems of local class field theory

It follows from local Artin reciprocity that all norm groups have finite index; Lemma 25.6
then implies that all norm groups are finite index open subgroups of K×. The existence
theorem of local class field theory states that the converse also holds.

Theorem 25.8 (Local Existence Theorem). Let K be a local field. For every finite
index open subgroup H of K× there is a unique finite abelian extension L/K inside Kab

for which H = NL/K(L×).

The local Artin homomorphism θK : K× → Gal(Kab/K) is not an isomorphism; in-
deed, it cannot be, because Gal(Kab/K) is compact but K× is not. However, the local
existence theorem implies that after taking profinite completions it becomes one. We can
then summarize all of local class field theory in the following theorem.

Theorem 25.9 (Main Theorem of Local Class Field Theory). Let K be a local
field. The local Artin homomorphism induces a canonical isomorphism

θ̂K : K̂×
∼−→ Gal(Kab/K)

of profinite groups.

Proof. The Galois group Gal(Kab/K) is a profinite group, isomorphic to the inverse limit

Gal(Kab/K) ' lim←−
L

Gal(L/K), (1)

where L ranges over the finite extensions of K in Kab ordered by inclusion; see Theo-
rem 24.21. It follows from Lemma 25.6, the local existence theorem (Theorem 25.8), and
the definition of the profinite completion, that

K̂× ' lim←−
L

K×/N(L×), (2)

where L ranges over finite abelian extensions of K (in Ksep). By local Artin reciprocity
(Theorem 25.2), for each finite abelian extension L/K we have an isomorphism

θL/K : K×/N(L×)
∼−→ Gal(L/K),

and these isomorphisms commute with the inclusion maps between finite abelian extensions
of K. We thus have an isomorphism of the inverse systems appearing in (1) and (2). The
isomorphism is canonical because the Artin map is unique and the isomorphisms in (1) and
(2) are both canonical.

In view of Theorem 25.9, we would like to better understand the profinite group K̂×.

If K is archimedean then K̂× is either trivial or the cyclic group of order 2, so let us assume
that K is nonarchimedean. If we pick a uniformizer π for the maximal ideal p of OK , then
we can uniquely write each x ∈ K× in the form uπv(x), with u ∈ O×K and v(x) ∈ Z, and
this defines an isomorphism

K×
∼−→ O×K × Z

x 7−→ (x/πv(x), v(x)).
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Taking profinite completions (which commutes with products), we obtain an isomorphism

K̂× ' O×K × Ẑ,

since the unit group
O×K ' F×p ×OK ' F×p × lim←−

n

OK/pn

is already profinite (hence isomorphic to its profinite completion, by Corollary 24.18). Note

that the isomorphism K̂× ' O×K × Ẑ is not canonical; it depends on our choice of π, and
there are uncountably many π to choose from.

We have a commutative diagram of exact sequences of topological groups

1 O×K K× Z 0

1 Gal(Kab/Kunr) Gal(Kab/K) Gal(Kunr/K) 1

← → ← →

←→ o

← →v

←→ θK

← →
←
↩

→ φ

←→ ←→ ←→res ←→

in which the bottom row is the profinite completion of the top row. The map φ on the right
is given by

Z ↪→ Ẑ ' Gal(Fp/Fp) ' Gal(Kunr/K)

and sends 1 to the sequence of Frobenius elements (FrobL/K) in the profinite group

Gal(Kunr/K) ' lim←−
L

Gal(L/K) ⊆
∏
L

Gal(L/K),

where L ranges over finite unramified extensions of K; here we are using the canonical
isomorphisms Gal(L/K) ' Gal(Fq/Fp) given by Theorem 10.16. The Frobenius element
φ(1) is a topological generator for Gal(Kunr/K), meaning that it generates a dense subset.

Remark 25.10. The Frobenius element φ(1) ∈ Gal(Kunr/K) corresponds to the Frobenius
automorphism x 7→ x#Fp of Gal(Fp/Fp); both are canonical topological generators of the
Galois groups in which they reside, and both are sometimes referred to as the arithmetic
Frobenius. There is another obvious generator for Gal(Kunr/K) ' Gal(Fp/Fp), namely
φ(−1), which is called the geometric Frobenius (for reasons we won’t explain here).

The group Gal(Kab/Kunr) ' O×K corresponds to the inertia subgroup of Gal(Kab/Kunr).
The top sequence splits (but not canonically), hence so does the bottom, and we have

Gal(Kab/K) ' Gal(Kab/Kunr)×Gal(Kunr/K) ' O×K × Ẑ.

For each choice of a uniformizer π ∈ OK we get a decomposition Kab = KπK
unr correspond-

ing to K× = O×KπZ. The field Kπ is the subfield of Kab fixed by θK(π) ∈ Gal(Kab/K).
Equivalently,

Kπ =
⋃

finite abelian
totally ramifiedL/K
for which π∈N(L×)

L.

Example 25.11. Let K = Qp and pick π = p. The decomposition K = KπK
unr is

Qab
p =

⋃
n

Qp(ζpn) ·
⋃
m⊥p

Qp(ζm),

where the first union on the RHS is fixed by θK(p) and the second is fixed by θK(O×K).
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Constructing the local Artin homomorphism is the difficult part of local class field
theory and we will not prove it in this course (but see 18.786). However, assuming the local
existence theorem, it is easy to show that, if it exists, the local Artin homomorphism is
unique.

Proposition 25.12. Let K be a local field and assume every finite index open subgroup
of K× is a norm group. There is at most one homomorphism θ : K× → Gal(Kab/K) of
topological groups that has the properties given in Theorem 25.2.

Proof. Let p = 〈π〉 be the maximal ideal of OK , and for each integer n ≥ 0 let Kπ,n/K
be the finite abelian extension for which N(K×π,n) is the norm group corresponding to the

finite index subgroup (1 + pn)〈π〉 of K× ' O×K〈π〉. Suppose θ : K× → Gal(Kab/K) is a
continuous homomorphism as in Theorem 25.2. Then Kπ =

⋃
nKπ,n, and θ(π) fixes Kπ,

since π ∈ N(Kπ,n) = ker θKπ,n/K for all n ≥ 0. We also know that θL/K(π) = FrobL/K for
all finite unramified extensions L/K, which uniquely determines the action of θ(π) on Kunr,
and hence on Kab = KπK

unr.
Now suppose θ′ : K× → Gal(Kab/K) is another continuous homomorphism satisfying

the properties in Theorem 25.2. By the argument above we must have θ′(π) = θ(π) for
every uniformizer π of OK , and K× is generated by its subset of uniformizers: if we fix
one uniformizer π, every x ∈ K× can be written as uπn = (uπ)πn−1 for some u ∈ O×K and
n ∈ Z, and uπ is another uniformizer). It follows that θ(x) = θ′(x) for all x ∈ K× and
therefore θ = θ′ is unique.

Remark 25.13. One approach to proving local class field theory uses the theory of formal
groups due to Lubin and Tate to explicitly construct the fields Kπ =

⋃
nKπ,n in the proof

of Proposition 25.12, along with a continuous homomorphism θπ : O×K → Gal(Kπ/K) that
extends uniquely to a continuous homomorphism θ : K× → Gal(KπK

unr/K). One then
shows that Kab = KπK

unr (using the Hasse-Arf Theorem), and that θ does not depend on
the choice of π; see [1, §I.2-4] for details.

25.4 Finite abelian extensions

Local class field theory gives us canonical bijections between the following sets:

(1) finite-index open subgroups of K× (all of which are necessarily normal);

(2) open subgroups of Gal(Kab/K) (which are necessarily normal and of finite index);

(3) finite abelian extensions of K in Kab (which necessarily lie in Kab).

The bijection from (1) to (2) is induced by the isomorphism K̂× ' Gal(Kab/K) given by
Theorem 25.9 and is inclusion preserving. The bijection from (2) to (3) follows from Galois
theory (for infinite extensions), and is inclusion reversing, while the bijection from (3) to
(1) is via the map L 7→ N(L×), which is also inclusion reversing.
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