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23 The ring of adeles, strong approximation

23.1 Introduction to adelic rings

Recall that we have a canonical injection

Z ↪→ Ẑ := lim←−
n

Z/nZ '
∏
p

Zp,

that embeds Z into the product of its nonarchimedean completions. Each of the rings Zp
is compact, hence Ẑ =

∏
p Zp is compact (by Tychonoff’s theorem). If we consider the

analogous product
∏
pQp of the completions of Q, each of the local fields Qp is locally

compact (as is the archimedean field Q∞ = R), but the product
∏
pQp is not locally

compact. Local compactness is important to us, because it gives us a Haar measure (recall
that every locally compact group has a translation-invariant measure that is unique up to
scaling), a tool we would like to have at our disposal.

To see where the problem arises, recall that for any family of topological spaces (Xi)i∈I
(here the index set I may be any set), the product topology on X :=

∏
Xi is, by definition,

the weakest topology that makes all the projection maps πi : X → Xi continuous; this
implies that it is generated by open sets of the form π−1i (Ui) with Ui ⊆ Xi open. Thus
every open set in X is a (possibly empty or infinite) union of open sets of the form∏

i∈S
Ui ×

∏
i/∈S

Xi,

with S ⊆ I finite and each Ui ⊆ Xi open (these sets form a basis for the topology on X).
In particular, every open set U ⊆ X satisfies πi(U) = Xi for all but finitely many i ∈ I.
Unless all but finitely many of the Xi are compact, the space X cannot possibly be locally
compact for the simple reason that no compact set C in X contains a nonempty open set
(if it did then we would have πi(C) = Xi compact for all but finitely many i ∈ I). Recall
that for X to be locally compact means that every x ∈ X we have x ∈ U ⊆ C for some
open set U and compact set C (so C is a compact neighborhood of x).

To solve this problem we want to take the product of the fields Qp (or more generally,
the completions of any global field) in a different way, one that yields a locally compact
topological ring. This is the motivation of the restricted product, a topological construction
that was invented primarily for the purpose of solving this number-theoretic problem.

23.2 Restricted products

This section is purely about the topology of restricted products; readers familiar with
restricted products should feel free to skip to the next section.

Definition 23.1. Let (Xi) be a family of topological spaces indexed by i ∈ I, and let (Ui)
be a family of open sets Ui ⊆ Xi. The restricted product

∐∏
(Xi, Ui) is the topological space∐∏

(Xi, Ui) := {(xi) : xi ∈ Ui for almost all i ∈ I} ⊆
∏

Xi

with the basis of open sets

B :=
{∏

Vi : Vi ⊆ Xi is open for all i ∈ I and Vi = Ui for almost all i ∈ I
}
,

where almost all means all but finitely many.
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For each i ∈ I we have a projection map πi :
∐∏

(Xi, Ui) → Xi defined by (xi) 7→ xi;
each πi is continuous, since if Ui is an open subset of Xi, then π−1i (Ui) is the union of all
V =

∏
Vi ∈ B with Vi = Ui, which is an open set.

As sets, we always have ∏
Ui ⊆

∐∏
(Xi, Ui) ⊆

∏
Xi,

but in general the restricted product topology on
∐∏

(Xi, Ui) is not the same as the subspace
topology it inherits from

∏
Xi; it has more open sets. For example,

∏
Ui is an open set in∐∏

(Xi, Ui), but unless Ui = Xi for almost all i, in which case
∐∏

(Xi, Ui) =
∏
Xi (both as

sets and as topological spaces), it is not open in
∏
Xi, and it is not open in the subspace

topology on
∐∏

(Xi, Ui) because it does not contain the intersection of
∐∏

(Xi, Ui) with any
basic open set in

∏
Xi (recall that these look like

∏
Vi with Vi = Xi for almost all i), so it

cannot be equal to the intersection of
∐∏

(Xi, Ui) with any open set in
∏
Xi.

Thus the restricted product is a generalization of the direct product, and the two coincide
if and only if Ui = Xi for almost all i. This is automatically true when the index set I is
finite, so only infinite restricted products are interesting.

Remark 23.2. The restricted product does not depend on any particular Ui. Indeed,∐∏
(Xi, Ui) =

∐∏
(Xi, U

′
i)

whenever U ′i = Ui for almost all i; note that the two restricted products are not merely
isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to
specify the Ui for all but finitely many i ∈ I.

Each x ∈ X :=
∐∏

(Xi, Ui) determines a finite subset S(x) ⊆ I consisting of the indices i
for which xi 6∈ Ui (which may be the empty set). Given any finite S ⊆ I we may consider

XS := {x ∈ X : S(x) = S} =
∏
i∈S

Xi ×
∏
i 6∈S

Ui.

Notice that XS ∈ B is an open set, and we can view it as a topological space in two ways,
both as a subspace of X or as a direct product of certain Xi and Ui. But notice that
restricting the basis B for X to a basis for the subspace XS yields

BS :=
{∏

Vi : Vi ⊆ πi(XS) is open and Vi = Ui = πi(XS) for almost all i ∈ I
}
,

which is the standard basis for the product topology, so the two topologies on XS coincide.
We have XS ⊆ XT whenever S ⊆ T , thus if we partially order the finite subsets S ⊆ I

by inclusion, the family of topological spaces {XS : S ⊆ I finite} with inclusion maps
{iST : XS ↪→ XT |S ⊆ T} forms a direct system, and we have a corresponding direct limit

lim−→
S

XS :=
∐

XS/ ∼,

which is the quotient of the coproduct space (disjoint union)
∐
XS by the equivalence

relation x ∼ iST (x) for all x ∈ S ⊆ T .1 This direct limit is canonically isomorphic to the
restricted product X, which gives us another way to define the restricted product; before
proving this let us recall the general definition of a direct limit of topological spaces.

1The topology on
∐
XS is the weakest topology that makes the injections XS ↪→

∐
XS continuous; its

open sets are disjoint unions of open sets in the XS . The topology on
∐
XS/ ∼ is the weakest topology that

makes the quotient map
∐
XS →

∐
XS/ ∼ continuous; its open sets are images of open sets in

∐
XS .

18.785 Fall 2016, Lecture #23, Page 2



Definition 23.3. A direct system (or inductive system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I (see Definition 8.7) and a family of morphisms
{fij : Xi → Xj : i ≤ j} such that each fii is the identity and fik = fjk ◦ fij for all i ≤ j ≤ k.

Definition 23.4. Let (Xi, fij) be a direct system of topological spaces. The direct limit
(or inductive limit) of (Xi, fij) is the quotient space

X = lim−→Xi :=
∐
i∈I

Xi/ ∼,

where xi ∼ fij(xi) for all i ≤ j. It is equipped with continuous maps φi : Xi → X that are
compositions of the inclusion maps Xi ↪→

∐
Xi and quotient maps

∐
Xi �

∐
Xi/ ∼ and

satisfy φi = φj ◦ fij for i ≤ j.
The topological space X = lim−→Xi has the universal property that if Y is another topo-

logical space with continuous maps ψi : Xi → Y that satisfy ψi = ψj ◦ fij for i ≤ j, then
there is a unique continuous map X → Y for which all of the diagrams

Xi Xj

X

Y

← →
fij

←

→
φi←

→
ψi

←→φj ←

→

ψj←→ ∃!

commute (this universal property defines the direct limit in any category with coproducts).

We now prove that that
∐∏

(Xi, Ui) ' lim−→XS as claimed above.

Proposition 23.5. Let (Xi) be a family of topological spaces indexed by i ∈ I, let (Ui) be a
family of open sets Ui ⊆ Xi, and let X :=

∐∏
(Xi, Ui) be the corresponding restricted product.

For each finite S ⊆ I define

XS :=
∏
i∈S

Xi ×
∏
i 6∈S

Ui ⊆ X,

and inclusion maps iST : XS ↪→ XT , and let lim−→XS be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

ϕ : X
∼−→ lim−→XS

that sends x ∈ X to the equivalence class of x ∈ XS(x) ⊆
∐
XS in lim−→XS :=

∐
XS/ ∼,

where S(x) := {i ∈ I : xi 6∈ Ui}.

Proof. To prove that the map ϕ : X → lim−→XS is a homeomorphism, we need to show that
it is (1) a bijection, (2) continuous, and (3) an open map.

(1) For each equivalence class C ∈ lim−→XS :=
∐
XS/ ∼, let S(C) be the intersection of

all the sets S for which C contains an element of
∐
XS in XS . Then S(x) = S(C) for all

x ∈ C, and C contains a unique element for which x ∈ XS(x) ⊆
∐
XS (distinct x, y ∈ XS

cannot be equivalent). Thus ϕ is a bijection.
(2) Let U be an open set in lim−→XS =

∐
XS/ ∼. The inverse image V of U in

∐
XS

is open, as are the inverse images VS of V under the canonical injections ι : XS ↪→
∐
XS .

The union of the VS in X is equal to ϕ−1(U) and is an open set in X; thus ϕ is continuous.
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(3) Let U be an open set in X. Since the XS form an open cover of X, we can cover U
with open sets US := U ∩XS , and then

∐
US is an open set in

∐
XS . Moreover, for each

x ∈
∐
US , if y ∼ x for some y ∈

∐
XS then y and x must correspond to the same element

in U ; in particular, y ∈
∐
US , so

∐
US is a union of equivalence classes in

∐
XS . It follows

that its image in lim−→XS =
∐
XS/ ∼ is open.

Proposition 23.5 gives us another way to construct the restricted product
∐∏

(Xi, Ui):
rather than defining it as a subset of

∏
Xi with a modified topology, we can instead construct

it as a limit of direct products that are subspaces of
∏
Xi.

We now specialize to the case of interest, where we are forming a restricted product
using a family (Xi)i∈I of locally compact spaces and a family of open subsets (Ui) that
are almost all compact. Under these conditions the restricted product

∐∏
(Xi, Ui) is locally

compact, even though the product
∏
Xi is not unless the index set I is finite.

Proposition 23.6. Let (Xi)i∈I be a family of locally compact topological spaces and let
(Ui)i∈I be a corresponding family of open subsets Ui ⊆ Xi almost all of which are compact.
Then the restricted product X :=

∐∏
(Xi, Ui) is locally compact.

Proof. We first note that for each finite set S ⊆ I the topological space

XS :=
∏
i∈S

Xi ×
∏
i 6∈S

Ui

can be viewed as a finite product of locally compact spaces, since all but finitely many of the
Ui are compact and the product of these is compact (by Tychonoff’s theorem), hence locally
compact. A finite product of locally compact spaces is always locally compact, since we
can construct compact neighborhoods as products of compact neighborhoods in each factor
(the key point is that in a finite product, products of open sets are open); thus the XS are
all locally compact, and the XS cover X (since each x ∈ X lies in XS(x)). It follows that X
is locally compact, since each x ∈ XS has a compact neighborhood x ∈ U ⊆ C ⊆ XS that
is also a compact neighborhood in X (the image of C under the inclusion map XS → X is
certainly compact, and U is open in X because XS is open in X).

23.3 The ring of adeles

Recall that for a global field K (finite extension of Q or Fq(t)), we use MK to denote the
set of places of K (equivalence classes of absolute values), and for any v ∈ MK we use Kv

to denote the corresponding local field (the completion of K with respect to v). When v is
nonarchimedean we use Ov to denote the valuation ring of Kv, and for nonarchimedean v
we define Ov := Kv.

2

Definition 23.7. Let K be a global field. The adele ring3 of K is the restricted product

AK :=
∐∏

(Kv,Ov)v∈MK
,

which we may view as a subset (but not a subspace!) of
∏
vKv; indeed

AK =
{

(av) ∈
∏

Kv : av ∈ Ov for almost all v
}
.

2Per Remark 23.2, as far as the topology goes it doesn’t matter how we define Ov at the finite number
of archimedean places, but we would like each Ov to be a topological ring, which motivates this choice.

3In French one writes adèle, but it is common practice to omit the accent when writing in English.
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For each a ∈ AK we use av to denote its projection in Kv; we make AK a ring by defining
addition and multiplication component-wise.

For each finite set of places S we have the subring of S-adeles

AK,S :=
∏
v∈S

Kv ×
∏
v 6∈S
Ov,

which is a direct product of topological rings. By Proposition 23.5, AK ' lim−→AK,S is the
direct limit of the S-adele rings, which makes it clear that AK is also a topological ring.

The canonical embeddings K ↪→ Kv induce a canonical embedding

K ↪→ AK
x 7→ (x, x, x, . . .).

Note that for each x ∈ K we have x ∈ Ov for all but finitely many v. The image of K in
AK forms the subring of principal adeles (which of course is also a field).

We extend the normalized absolute value ‖ ‖v of Kv (see Definition 13.18) to AK via

‖a‖v := ‖av‖v,

and define the adelic absolute value (or adelic norm)

‖a‖ :=
∏

v∈MK

‖a‖v ∈ R≥0

which we note converges because ‖a‖v ≤ 1 for almost all v. For ‖a‖ 6= 0 this is equal to the
size of the MK-divisor (‖a‖v) we defined in Lecture 15 (see Definition 15.1). For any nonzero
principal adele a we necessarily have ‖a‖ = 1, by the product formula (Theorem 13.22).

Example 23.8. For K = Q the adele ring AQ is the union of the rings

R×
∏
p∈S

Qp ×
∏
p6∈S

Zp

where S varies over finite sets of primes (but note that the topology is the restricted product
topology, not the subspace topology in

∏
p≤∞Qp). We can also write AQ as

AQ =

a ∈ ∏
p≤∞

Qp : ‖a‖p ≤ 1 for almost all p

 .

Proposition 23.9. The adele ring AK of a global field K is locally compact and Hausdorff.

Proof. Local compactness follows from Proposition 23.6, since the local fields Kv are all
locally compact and all but finitely many Ov are valuation rings of a nonarchimedean local
field, hence compact (Ov = {x ∈ Kv : ‖x‖v ≤ 1} is a closed ball in a locally compact metric
space). If x, y ∈ AK are distinct then xv 6= yv for some v ∈MK , and since Kv is Hausdorff
we can separate xv and yv by open sets whose inverse images under the projection map
πv : AK → Kv are open sets separating x and y; thus AK is Hausdorff.

Proposition 23.9 implies that the additive group of AK (which is sometimes denoted A+
K

to emphasize that we are viewing it as a group rather than a ring) is a locally compact group,
and therefore has a Haar measure that is unique up to scaling. Each of the completions Kv

is a local field with a Haar measure µv that we normalize as follows:

18.785 Fall 2016, Lecture #23, Page 5

http://math.mit.edu/classes/18.785/2016fa/LectureNotes13.pdf#theorem.2.18
http://math.mit.edu/classes/18.785/2016fa/LectureNotes15.pdf#theorem.2.1
http://math.mit.edu/classes/18.785/2016fa/LectureNotes13.pdf#theorem.2.22


• µv(Ov) = 1 for all nonarchimedean v;

• µv(S) = µR(S) for Kv ' R, where µR(S) is the Lebesgue measure on R;

• µv(S) = 2µC(S) for Kv ' C, where µC(S) is the Lebesgue measure on C ' R× R.

Note that the normalization of µv at the archimedean places is consistent with the measure
µ on KR ' Rr × Cs ' Rn induced by the canonical inner product on KR ⊆ KC that we
defined in Lecture 14 (see §14.2).

We now define a measure µ on AK as follows. We take as a basis for the σ-algebra of
measurable sets all sets of the form

∏
v Bv, where each Bv is a measurable set in Kv with

µv(Bv) <∞ such that Bv = Ov for almost all v (the σ-algebra is then generated by taking
countable intersections, unions, and complements in AK). We then define

µ

(∏
v

Bv

)
:=
∏
v

µv(Bv).

It is easy to verify that µ is a Radon measure, and it is clearly translation invariant since
each of the Haar measures µv is translation invariant and addition is defined component-
wise; note that for any x ∈ AK and measurable set B =

∏
v Bv the set x+B =

∏
v(xv+Bv)

is also measurable, since xv + Bv = Ov whenever xv ∈ Ov and Bv = Ov, and this applies
to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that µ is a
Haar measure on AK which we henceforth adopt as our normalized Haar measure on AK .

We now want to understand the behavior of the adele ring AK under base change. Note
that the canonical embedding K ↪→ AK makes AK a K-vector space, and if L/K is any
finite separable extension of K (also a K-vector space), we may consider the tensor product

AK ⊗ L,

which is also an L-vector space. As a topological K-vector space, the topology on AK ⊗ L
is just the product topology on [L : K] copies of of AK (this applies whenever we take a
tensor product of topological vector spaces, one of which has finite dimension).

Proposition 23.10. Let L be a finite separable extension of a global field K. There is a
natural isomorphism of topological rings

AL ' AK ⊗K L

that makes the following diagram commute

L K ⊗K L

AL AK ⊗K L

←→∼

←→ ←→

←→∼

Proof. On the RHS the tensor product AK ⊗K L is isomorphic to the restricted product∐∏
v
(Kv ⊗K L,Ov ⊗OK

OL).

Explicitly, each element of AK ⊗K L is a finite sum of elements of the form (av)⊗ x, where
(av) ∈ AK and x ∈ L, and there is a natural isomorphism

AK ⊗K L
∼−→
∐∏

v∈MK

(Kv ⊗K L,Ov ⊗OK
OL)

(av)⊗ x 7→ (av ⊗ x)
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that is both a ring isomorphism and a homeomorphism of topological spaces.
On the LHS we have AL :=

∐∏
w∈ML

(Lw,Ow). But note that Kv ⊗K L '
∏
w|v Lw,

by Theorem 11.20 and Ov ⊗OK
OL '

∏
w|vOw, by Corollary 11.23. These isomorphisms

preserve both the algebraic and the topological structures of both sides, and it follows that

AK ⊗K L '
∐∏

v∈MK

(Kv ⊗K L,Ov ⊗OK
OL) '

∐∏
w∈ML

(Lw,Ow) = AL

is an isomorphism of topological rings. The image of x ∈ L in AK ⊗K L via the canonical
embedding of L into AK ⊗K L is 1⊗ x = (1, 1, 1, . . .)⊗ x, whose image (x, x, x, . . .) ∈ AL is
equal to the image of x ∈ L under the canonical embedding of L into its adele ring AL.

Corollary 23.11. Let L be a finite separable extension of a global field K of degree n.
There is a natural isomorphism of topological K-vector spaces (and locally compact groups)

AL ' AK ⊕ · · · ⊕ AK

that identifies AK with the direct sum of n copies of AK , and this isomorphism restricts to
an isomorphism L ' K ⊕ · · · ⊕K of the principal adeles of AL with the n-fold direct sum
of the principal adeles of AK .

Theorem 23.12. For each global field L the principal adeles L ⊆ AL form a discrete
cocompact subgroup of the additive group of the adele ring AL.

Proof. Let K be the rational subfield of L (so K = Q or K = Fq(t)). It follows from the
previous corollary, that if the theorem holds for K then it holds for L, so we will prove the
theorem for K. Let us identify K with its image in AK (the principal adeles).

To show that the topological group K is discrete in AK , it suffices to show that 0 is an
isolated point. Consider the open set

U = {a ∈ AK : ‖a‖∞ < 1 and ‖a‖v ≤ 1 for all v <∞},

where ∞ denotes the unique infinite place of K (either the real place of Q or the place
corresponding to the degree valuation v∞(f/g) = deg f − deg g of Fq(t)). The product
formula (Theorem 13.22) implies ‖a‖ = 1 for all nonzero a ∈ K ⊆ AK , so U ∩K = {0}.

To prove that the quotient AK/K is compact, we consider the set

W := {a ∈ AK : ‖a‖v ≤ 1 for all v}.

If we let U∞ := {x ∈ K∞ : ‖x‖∞ ≤ 1}, then

W = U∞ ×
∏
v<∞
Ov ⊆ AK,{∞} ⊆ AK

is a product of compact sets and therefore compact. We will show that W contains a
complete set of coset representatives for K in AK . This implies that AK/K is the image of
the compact set W under the (continuous) quotient map AK → AK/K, hence compact.

Let a = (av) be any element of AK . We wish to show that a = b + c for some b ∈ W
and c ∈ K, which we will do by constructing c ∈ K so that b = a− c ∈W .

For each v < ∞ define xv ∈ K as follows: put xv := 0 if ‖av‖ ≤ 1 (almost all v), and
otherwise choose xv ∈ K so that ‖av − xv‖v ≤ 1 and ‖xv‖w ≤ 1 for w 6= v. To show that
such an xv exists, let us first suppose av = r/s ∈ K with r, s ∈ OK coprime, and let p be the
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maximal ideal of Ov. The ideals pv(s) and p−v(s)(s) are coprime, so we can write r = r1 + r2
with r1 ∈ pv(s) and r2 ∈ p−v(s)(s) ⊆ OK , so that av = r1/s + r2/s with v(r1/s) ≥ 0 and
w(r2/s) ≥ 0 for all w 6= v. If we now put xv := r2/s, then ‖av − xv‖v = ‖r1/s‖v ≤ 1 and
‖xv‖w = ‖r2/s‖w ≤ 1 for all w 6= v as desired. We now note that we can approximate
av ∈ Kv by a′v ∈ K with ‖av − a′v‖ < ε and construct xv using a′v as above so that
‖a′v − xv‖ ≤ 1 and ‖av − xv‖ ≤ 1 + ε, but for sufficiently small ε this implies ‖av − xv‖ ≤ 1
(because ‖ ‖v is discrete).

If we now consider av ∈ Kv and a sequence of elements ai ∈ K that converge to av in
Kv, the corresponding sequence of xi ∈ K constructed as above lies in a compact set and
therefore contains a convergent subsequence whose limit we can take as our choice of xv.

Finally, let x :=
∑

v<∞ xv ∈ K and choose x∞ ∈ OK so that

‖a∞ − x− x∞‖∞ ≤ 1.

For K = Q we can take x∞ ∈ Z to be the nearest integer to the rational number a∞ − x,
and when K = Fq(t), if a∞ − x = f/g with f, g ∈ Fq[t] coprime, we can write f = gh + u
for some h, u ∈ Fq[t] with deg u < deg g and then take x∞ := −h.

Now let c :=
∑

v≤∞ xv ∈ K ⊆ AK , and let b := a− c. Then a = b+ c, with c ∈ K, and
we claim that b ∈W . For each v <∞ we have xw ∈ Ov for all w 6= v and

‖b‖v = ‖a− c‖v =

∥∥∥∥∥∥av −
∑
w≤∞

xw

∥∥∥∥∥∥
v

≤ max (‖av − xv‖v,max({‖xw‖v : w 6= v})) ≤ 1,

by the nonarchimedean triangle inequality. For v =∞ we have ‖b‖∞ = ‖a∞ − c‖∞ ≤ 1 by
our choice of x∞, and ‖b‖v ≤ 1 for all v, so b ∈W as claimed and the theorem follows.

23.4 Strong approximation

We are now ready to prove the strong approximation theorem, an important result that has
many applications. In order to prove it we first prove an adelic version of the Blichfeldt-
Minkowski lemma.

Lemma 23.13 (Blichfeldt-Minkowski lemma). Let K be a global field. There is a positive
constant B such that for any a ∈ AK with ‖a‖ > B there exists a nonzero principal adele
x ∈ K ⊆ AK for which ‖x‖v ≤ ‖a‖v for all v ∈MK .

Proof. Let b0 := covol(K) be the measure of a fundamental region for K in AK under our
normalized Haar measure µ on AK (by Theorem 23.12, K is cocompact, so b0 is finite).
Now define

b1 := µ
({
z ∈ AK : ‖z‖v ≤ 1for all v and ‖z‖v ≤ 1

4 if v is archimedean
})
.

Then b1 6= 0, since K has only finitely many archimedean places, and we put B := b0/b1.
4

Suppose a ∈ AK satisfies ‖a‖ > B. We know that ‖a‖v ≤ 1 for all almost all v, so
‖a‖ > B implies that ‖a‖v = 1 for almost all v. Let us now consider the set

T :=
{
t ∈ AK : ‖t‖v ≤ ‖a‖v for all v and ‖t‖v ≤ 1

4‖a‖v if v is archimedean
}
.

4With our canonical normalization of µ we will actually get the same B for all K, but we don’t need this.
With a little more care one can show that in fact B = 1 works.

18.785 Fall 2016, Lecture #23, Page 8



From the definition of b1 we have

µ(T ) = b1‖a‖ > b1B = b0;

this follows from the fact that the Haar measure on AK is the product of the normalized
Haar measures µv on each of the Kv. Since µ(T ) > b0, the set T is not contained in any
fundamental region for K, so there must be distinct t1, t2 ∈ T with the same image in
AK/K, equivalently, whose difference x = t1 − t2 is a nonzero element of K ⊆ AK . Now

‖t1 − t2‖v ≤


max(‖t1‖v, ‖t2‖v) ≤ ‖a‖v nonarch. v;

‖t1‖v + ‖t2‖v ≤ 2 · 14‖x‖v ≤
1
2‖a‖v real v;

(‖t1 − t2‖1/2v )2 ≤ (‖t1‖1/2v + ‖t2‖1/2v )2 ≤ (2 · 12‖a‖
1/2
v )2 ≤ ‖a‖v complex v.

Here we have used the fact that the normalized absolute value ‖ ‖v satisfies the nonar-
chimedean triangle inequality when v is nonarchimedean, ‖ ‖v satisfies the archimedean

triangle inequality when v is real, and ‖ ‖1/2v satisfies the archimedean triangle inequality
when v is complex. Thus ‖x‖v = ‖t1 − t2‖v ≤ ‖a‖v for all places v ∈MK as desired.

Theorem 23.14 (Strong Approximation). Let MK = S tT t{w} be a partition of the
places of a global field K with S finite. Given any av ∈ K and εv ∈ R>0 with v ∈ S, there
exists an x ∈ K for which

‖x− av‖v ≤ εv for all v ∈ S,
‖x‖v ≤ 1 for all v ∈ T,

(note that there is no constraint on ‖x‖w).

Proof. Let W = {z ∈ AK : ‖z‖v ≤ 1 for all v ∈ MK} as in the proof of Theorem 23.12.
Then W contains a complete set of coset representatives for K ⊆ AK , so AK = K + W .
For any nonzero u ∈ K ⊆ AK we also have AK = K + uW : given c ∈ AK write u−1c ∈ AK
as u−1c = a + b with a ∈ K and b ∈ W and then c = ua + ub with ua ∈ K and ub ∈ uW .
Now choose z ∈ AK such that

0 < ‖z‖v ≤ εv for v ∈ S, 0 < ‖z‖v ≤ 1 for v ∈ T, ‖z‖w > B
∏
v 6=w
‖z‖−1v ,

where B is the constant in the Blichfeldt-Minkowski Lemma 23.13 (this is clearly possible).
We have ‖z‖ > B, so there is a nonzero u ∈ K ⊆ AK with ‖u‖v ≤ ‖z‖v for all v ∈MK .

Now let a = (av) ∈ AK be the adele with av given by the hypothesis of the theorem for
v ∈ S and av = 0 for v 6∈ S. We have AK = K + uW , so a = x + y for some x ∈ K and
y ∈ uW . Therefore

‖x− av‖v = ‖y‖v ≤ ‖u‖v ≤ ‖z‖v ≤

{
εv for v ∈ S,
1 for v ∈ T,

as desired.

Corollary 23.15. Let K be a global field and let w be any place of K. Then K is dense in
the restricted product

∐∏
v 6=w(Kv,Ov).

Remark 23.16. Theorem 23.14 and its corollary can be generalized to algebraic groups
(the global field K can be viewed as the algebraic group GL1(K)); see [1] for a survey.
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