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22 The main theorems of global class field theory

In this lecture we refine the correspondence between quotients of ray class groups and
subfields of ray class fields given by the Artin map so that we can more precisely state the
main theorems of global class field theory in their ideal-theoretic form. Let us first recall
the notational setup.

We have a number field K and a modulus m : MK → Z≥0 that we view as a formal
product over the places of K; we may write m = m0m∞, where m0 :=

∏
pm(p) is a product

over primes (finite places) of K and m∞ :=
∏
v|∞ v

m(v) defines a subset of the real places
of K (recall that for v|∞ we have m(v) ≤ 1 with m(v) = 0 if v is complex). We then define

• ImK ⊆ IK , the subgroup of fractional ideals prime to m;

• Km ⊆ K×, the subgroup of α ∈ K× for which (α) ∈ ImK ;

• Km,1 ⊆ Km, the subgroup of α ∈ Km for which vp(α− 1) ≥ vp(m0) for p|m0

and αv > 0 for v|m∞ (here αv ∈ R is the image of α under the real-embedding v);

• Rm
K ⊆ ImK the subgroup of ideals (α) ∈ ImK with α ∈ Km,1 (the ray group);

• ClmK := ImK/Rm
K (the ray class group);

• Spl(L) := Spl(L/K), the set of primes of K that split completely in an extension L;

• ψm
L/K : ImK → Gal(L/K), the Artin map for an abelian extension L/K.

In the previous lecture we defined the ray class field of K for the modulus m as a finite
abelian extension L/K unramified outside of m for which the kernel of the Artin map ψm

L/K

is equal to the the ray group Rm
K . A prime p 6 | m lies in the kernel of ψm

L/K if and only if it

splits completely in L (for unramified primes p in an abelian extension to split completely
is to have residue field degree 1, in which case the Frobenius element σp is trivial). Thus

{p ∈ Rm
K} ∼ Spl(L)

(recall S ∼ T means T − S and S − T are finite), and Theorem 21.16 implies that the
ray group uniquely determines the ray class field (assuming it exists); we will use K(m) to
denote the ray class field. The Artin map ψm

K(m)/K induces a canonical isomorphism

ClmK = ImK/Rm
K ' Gal(K(m)/K)

between the ray class group ClmK and the Galois group of the ray class field.
More generally, if L ⊆ K(m) is any subfield of the ray class field, the kernel of the Artin

map ψm
L/K is a subgroup C of ImK that contains the ray group

Rm
K ⊆ C ⊆ ImK ,

and we have an isomorphism

ImK/C ' ClmK/C ' Gal(L/K)

where C denotes the image of C in ClmK = ImK/Rm
K under the quotient map.

Before proceeding, let us be clear on what we have and have not proved so far. In the
previous lecture we proved that the Artin map is surjective (Theorem 21.17), and we defined
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the ray class field K(m) to be an extension L/K for which kerψm
L/K = Rm

K . We have not

proved (nor will we prove) that such a field K(m) exists, but if it does, we know that it is
uniquely determined and depends only on the field K and the modulus m.

Assuming K(m) exists, if L is a subfield of K(m) then kerψm
L/K is a subgroup of ImK

containing Rm
K (a congruence subgroup, as defined below). To prove that every abelian

extension L/K lies in some ray class field K(m) it is enough to show that kerψm
L/K contains

Rm
K for some modulus m, since then Spl(K(m)) - Spl(L) and therefore L ⊆ K(m), by

Theorem 21.16. This is the other half of Artin reciprocity (the hard half), which together
with the existence of the ray class fields K(m) is one of the main theorems of class field
theory. In this lecture we want to better understand the structure of congruence subgroups,
and to specify a minimal modulus m for which we should expect a given finite abelian
extension L/K to lie in a subfield of the ray class fieldK(m) (the conductor of the extension).
So far we have not addressed this question even for K = Q (but see Problem Set 9); our
proof of the Kronecker-Weber theorem showed that every abelian extension lies in some
cyclotomic field Q(ζm), but we made no attempt to determine such an integer m (or more
precisely, a modulus m of the form m = (m)∞ or m = (m)).

22.1 Congruence subgroups

Our presentation here is adapted from [1, §3.3] but our notation differs slightly.

Definition 22.1. Let K be a number field and let m be a modulus for K. A congruence
subgroup (for the modulus m) is a subgroup C of ImK that contains Rm

K . We write C for the
image of C in ImK/Rm

K = ClmK under the quotient map.

As noted above, congruence subgroups are the groups we expect to arise as the kernel
of an Artin map ψm

L/K : ImK → Gal(L/K) associated to a finite abelian extension L/K, for
a suitable choice of the modulus m. In general the modulus m that we use to define ψm

L/K
may be any modulus divisible by all the primes of K that ramify in L, and if we have
one modulus m for which Rm

K ⊆ kerψm
L/K (so kerψm

L/K is in fact a congruence subgroup),

then every modulus divisible by m will have the same property (making m bigger make Rm
K

smaller which makes it easier for kermL/K to contain Rm
K). For every such m, if C = kerψm

L/K
is a congruence subgroup then we have an isomorphism

ImK/C ' ClmK/C ' Gal(L/K)

that allow us to view L as a subfield of the ray class field K(m); namely, the unique subfield
L of K(m) for which Spl(L) ∼ {p : p ∈ C}. There are thus infinitely many congruence
subgroups associated to each finite abelian extension L/K; we want to define an equivalence
relation on congruence subgroups that will put all the congruence subgroups associated to
L/K in a single equivalence class, and to distinguish a unique representative for each class.

We should emphasize that the kernel of the Artin map ψm
L/K is not always a congruence

subgroup. There are constraints on the modulus m that must be satisfied beyond the basic
requirement that m is divisible by all the primes of K that ramify in L. For example, the
cyclic cubic extension L := Q[x]/(x3 − 3x− 1)/Q is ramified only at 3 but clearly does not
lie in the cyclotomic field Q(ζ3), so the modulus m = (3)∞ does not work, but the modulus
m = (9) does; in fact L is the ray class field of Q for this modulus. One of our other
goals in this lecture is to associate to each abelian extension L/K a minimal modulus c, the
conductor of the extension L/K, with the property that ψm

L/K is a congruence subgroup
whenever m is divisible by c and otherwise not.
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Definition 22.2. Let K be a number field with moduli m1 and m2. If C1 is a congruence
subgroup for m1 and C2 is a congruence subgroup for m2 then we say that C1 and C2 are
equivalent and write C1 ∼ C2 whenever

Im1
K ∩ C2 = Im2

K ∩ C1,

as subgroups of IK . Note that if m1 = m2 this reduces to C1 = C2.

Proposition 22.3. Let K be a number field. The relation C1 ∼ C2 is an equivalence relation
on the set of congruence subgroups in IK .

Proof. The relation ∼ is clearly reflexive and symmetric. To show that it is transitive,
suppose C1 ∼ C2 and C2 ∼ C3. Let a ∈ Im3

K ∩ C1 and pick α ∈ Km1m3,1 so that αa ∈ Im1m2m3
K

(this is possible by Lemma 21.5 and Theorem 8.5). Then (α) ∈ Rm1m3
K ⊆ Rm1

K ⊆ C1 and
a ⊆ C1, so αa ∈ C1, and we also have αa ∈ Im1m2m3

K ⊆ Im2
K , so

αa ∈ Im2
K ∩ C1 = Im1

K ∩ C2 ⊆ C2,

since C1 ∼ C2, and αa ∈ Im1m2m3
K ⊆ Im3

K , so

αa ∈ Im3
K ∩ C2 = Im2

K ∩ C3 ⊆ C3,

since C2 ∼ C3. We have (α) ∈ Rm1m3
K ⊆ Rm3

K , so (α) ∈ C3 and therefore (α)−1 ∈ C3, since C3
is a group. Thus α−1αa = a ∈ C3, and we also have a ∈ C1 ⊆ Im1

K , so a ∈ Im1
K ∩ C3. This

proves that
Im3
K ∩ C1 ⊆ I

m1
K ∩ C3

and the reverse inclusion follows by symmetry (swap C1 and C3). Thus C1 ∼ C3, which
proves transitivity, and ∼ is therefore an equivalence relation.

Within an equivalence class of congruence subgroups there can be at most one con-
gruence subgroup for each modulus (since C1 ∼ C2 ⇔ C1 = C2 when C1 and C2 have the
same modulus), thus the partial ordering of moduli by divisibility (where m1|m2 means
m1(v) ≤ m2(v) for all v ∈ MK) induces a partial ordering of the congruence subgroups
within an equivalence class. We now show that each equivalence class of congruence sub-
groups has a unique minimal element under this partial ordering.

Lemma 22.4. Let C1 be a congruence subgroup of modulus m1 for a number field K. There
exists a congruence subgroup C2 of modulus m2|m1 equivalent to C1 if and only if

Im1
K ∩ P

m2
K ⊆ C1,

in which case C2 = C1Rm2
K .

Proof. Note that m2|m1 implies Im1
K ⊆ I

m2
K , so C1 ⊆ Im1

K ⊆ I
m2
K .

Suppose C2 ∼ C1 has modulus m2. Then Im1
K ∩ C2 = Im2

K ∩ C1 = C1, and Rm2
K ⊆ C2, so

Im1
K ∩ R

m2
K ⊆ C1 as claimed. Now suppose Im1

K ∩ R
m2
K ⊆ C1, and let C2 := C1Rm2

K . Then C2
is a congruence subgroup of modulus m2 and

C1(Im1
K ∩R

m2
K ) = Im1

K ∩ C1R
m2
K = Im1

K ∩ C2,

and C1(Im1
K ∩R

m2
K ) ⊆ C1C1 = C1, so Im1

K ∩C2 ⊆ C1; in fact equality holds since C1 ⊆ Im1
K and

C1 ⊆ C2. Thus Im1
K ∩ C2 = C1 = Im2

K ∩ C1 and C1 ∼ C2.
The equivalence class of C1 contains at most one congruence subgroup of modulus m2,

so if one exists it must be C2 = C1Rm2
K .
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Proposition 22.5. Let C1 ∼ C2 be congruence subgroups of modulus m1 and m2, respec-
tively. There exists a congruence subgroup C ∼ C1 ∼ C2 with modulus n := gcd(m1,m2).

Proof. Put m := lcm(m1,m2) and D := Im2
K ∩ C1 = Im1

K ∩ C2; then

Rm
K = Rm1

K ∩R
m2
K ⊆ D ⊆ I

m
K ,

so D is a congruence subgroup of modulus m, and we have

ImK ∩R
m1
K ⊆ D and ImK ∩R

m2
K ⊆ D,

so D ∼ C1 ∼ C2, by Lemma 22.4. To prove the existence of an equivalent congruence
subgroup C of modulus n it suffices to show ImK ∩Rn

K ⊆ D (again by Lemma 22.4).
So let a = (α) ∈ ImK ∩ Rn

K , and choose β ∈ Km ∩ Km2,1 so that αβ ∈ Km1,1 (this is
possible by Theorem 8.5 because m = lcm(m1,m2) and n = gcd(m1,m2)). Then (β) ∈ D
and βa ∈ ImK ∩ R

m1
K ⊆ D, so β−1βa = a ∈ D. Thus ImK ∩ P n

K ⊆ D and therefore C = DRn
K

is a congruence subgroup of modulus n equivalent to D ∼ C1 ∼ C2.

Corollary 22.6. Let C be a congruence subgroup of modulus m for a number field K. There
is a unique congruence subgroup in the equivalence class of C whose modulus c divides the
modulus of every congruence subgroup equivalent to C.

Definition 22.7. Let C be a congruence subgroup of modulus m for a number field K. The
unique modulus c given by Corollary 22.6 is the conductor of C, which we may denote c(C).
If the conductor of C is equal to its modulus then we say that C is primitive.

Proposition 22.8. Let C be a primitive congruence subgroup of modulus m for a number
field K. Then m is the conductor of every congruence subgroup of modulus m contained
in C; in particular, m is the conductor of Rm

K .

Proof. Let C0 ⊆ C be a congruence subgroup of modulus m and let c be its conductor. Then
c|m and ImK ∩ Rc

K ⊆ C0 ⊆ C, by Lemma 22.4, and this implies that there is a congruence
subgroup of modulus c equivalent to C, and therefore m|c, so c = m.

The proposition implies that a modulus m occurs as a conductor if and only if Rm
K

is primitive; this does not always hold (consider K = Q and m = (2), for example; the

conductor of R(2)
Q = IQ is trivial, so (2) is not a conductor).

22.2 Dirichlet’s theorem for number fields

We now want to prove a generalization of Dirichlet’s theorem on primes in arithmetic
progressions. We first need to generalize our notion of a Dirichlet character.

Definition 22.9. Let m be a modulus for a number field K. A character of ImK is a group
homomorphism χ : ImK → U(1) whose kernel contains Rm

K . The modulus of χ is m, and the
conductor of χ is the conductor c = c(χ) :− c(kerχ) of its kernel (as a congruence subgroup
of modulus m); we say that χ is primitive if its modulus is equal to its conductor. If C is a
congruence subgroup of modulus m we say that χ is a character for C if its kernel contains C,
which case χ induces a character of the finite abelian group ImK/C ' ClmK/C. The principal
character χ0 of modulus m is the unique character for ImK ; it has trivial conductor.
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Each character χ of ImK induces a character

χ : ClmK → U(1)

of the finite abelian group ClmK . Conversely, each character of ClmK induces a character
χ : ImK → U(1) whose kernel contains the ray group Rm

K (take the value of χ on the image
of each I ∈ ImK in ClmK). We thus view χ as a character of both ImK and ClmK and call it a
ray class character.

Remark 22.10. For K = Q, a ray class character χ of modulus m = (m)∞ corresponds
to a Dirichlet character of modulus m (see Lecture 17).

Definition 22.11. Let m be a modulus for a number field K. The Weber L-function of a
ray class character χ of modulus m is defined by

L(s, χ) :=
∏
p6 |m

(
1− χ(p)N(p)−s

)−1
=
∑
a⊥m

χ(a)N(a)−s,

where the the product is over prime ideals p not dividing m and the sum is over OK-ideals
a coprime to m; the product and and sum both converge to a non-vanishing holomorphic
function on Re(s) > 1.

Proposition 22.12. Let χ be a ray class character of modulus m for a number field K of
degree n. Then L(s, χ) extends to a meromorphic function on Re(s) > 1 − 1

n that has at
most a simple pole at s = 1 and is holomorphic if χ is non-principal.

Proof. Associated to each ray class γ ∈ ClmK we have a partial Dedekind zeta function

ζK,γ(s) :=
∏
p∈γ

(1−N(p)−s)−1

that is holomorphic on Re(s) > 1. For the trivial modulus m, our proof of analytic class
number formula immediately implies that ζK,γ(s) has a meromorphic continuation to 1− 1

n
with a simple pole at s = 1 that has the same residue ρ as the Dedekind zeta function ζK(s);
recall that in our proof of Theorem 19.12 we treated each γ ∈ ClK = cl(OK) separately and
obtained the same value of ρ for each class.

The same proof works for ClmK , mutatis mutandi : replace covol(OK) with covol(m0),
replace the regulator RK = covol(π(Log(O×K)) with Rm

K := covol(π(Log(O×K ∩Km,1)), and
replace wK = #(O×K)tors with wm

K = #(O×K∩Km,1)tors. The exact value of ρ is not important
to us here, the key point is that ζK,γ(s) has a meromorphic continuation to Re(s) > 1− 1

n
with a simple pole at s = 1 whose residue ρ depends only on K and m (not γ).

We then have

L(s, χ) =
∑
γ∈ClmK

χ(γ)ζK,γ(s)

=
∑
γ∈ClmK

χ(γ)
(
ζK,γ(s)− ρ ζ(s)

)
+
∑
γ∈ClmK

χ(γ)ρ ζ(s),

The first sum is a finite sum of functions holomorphic on Re(s) > 1 − 1
n (since ζ(s) has

a simple pole at s = 1 with residue 1), and the second sum vanishes whenever χ is non-
principal (by Corollary 18.11). The proposition follows.
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We now prove an analog of Dirichlet’s theorem on primes in arithmetic progressions,
subject to the assumption that L(1, χ) 6= 0 for all non-principal χ, which you will recall was
the last step in our proof of Dirichlet’s theorem.

Remark 22.13. We proved the nonvanishing of Dirichlet L-functions L(1, χ) for non-
principal χ using the analytic class number formula for Q(ζm), the ray class field Q((m)∞),
by writing the Dedekind zeta function for Q(ζm) as a product of Dirichlet L-functions (see
Theorem 19.15). A similar approach works for Weber L-functions, given the existence of
ray class fields K(m). Our goal in the remainder of this lecture is to prove as much as we
can without assuming the existence of ray class fields, and then show that their existence
implies L(1, χ) 6= 0 for all non-principal ray class characters χ.

Theorem 22.14. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. The set of primes S := {p ∈ C} has Dirichlet density

d(S) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= χ0 for C,
0 otherwise.

Proof. We proceed as we did when proving Dirichlet’s theorem (see §18.5). We first con-
struct the indicator function for the set S:

1

n

∑
χ

χ(p) =

{
1 if p ∈ C,
0 otherwise,

where the sum is over the Dirichlet characters for C; this is equivalent to summing char-
acters of the finite abelian group G := ImK/C over the image of p in G, so we may apply
Corollary 18.11. As s→ 1+ we have

logL(s, χ) ∼
∑
p6 |m

χ(p)N(p)−s,

and therefore ∑
χ

logL(s, χ) ∼
∑
χ

∑
p6 |m

χ(p)N(p)−s

∼ n
∑
p∈C

N(p)−s.

By Proposition 22.12, we may write

L(s, χ) = (s− 1)m(χ)g(s)

for some function g(s) that is holomorphic and nonvanishing on a neighborhood of 1, where
m(χ) := ords=1L(s, χ) is −1 when χ = χ0 is principal, and m(χ) ≥ 0 for χ 6= χ0. We have

log
1

s− 1
−
∑
χ 6=χ0

m(χ) log
1

s− 1
∼ n

∑
p∈cC

N(p)−s.

Dividing both sides by n log 1
s−1 yields

1−
∑

χ 6=χ0
m(χ)

n
∼
∑

p∈C N(p)−s

log 1
s−1

(as s→ 1+),
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thus

d(S) = d({p ∈ C}) = lim
s→1+

∑
p∈C N(p)−s

log 1
s−1

=
1−

∑
χ 6=χ0

m(χ)

n
.

The m(χ) are integers and the Dirichlet density is nonnegative, so either m(χ) = 0 for all
χ 6= χ0, in which case L(1, χ) 6= 0 for all χ 6= 0 and d(S) = 1

n , or m(χ) = 1 for exactly one
of the χ 6= χ0 and d(S) = 0.

Corollary 22.15. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. For every ideal a ∈ ImK the set S := {p ∈ aC} has Dirichlet density

d(S) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= χ0 for C,
0 otherwise.

Proof. The proof is the same as in Theorem 22.14, except we now use the indicator function

1

n

∑
χ

χ(a)−1χ(p) =

{
1 if p ∈ aC,
0 otherwise,

and obtain ∑
χ

χ(a)−1 logL(s, χ) ∼
∑
χ

∑
p6 |m

χ(a)−1χ(p)N(p)−s ∼ n
∑
p∈aC

N(p)−s.

The rest of the proof is the same.

Corollary 22.16. Let L/K be an abelian extension of number fields and let C be a congru-
ence subgroup for a modulus m of K. If Spl(L) - {p : p ∈ C} then

[ImK : C] ≤ [L : K]

and L(1, χ) 6= 0 for all characters χ 6= χ0 for C. If Spl(L) ∼ {p ∈ C} then equality holds.

Proof. We know from Theorem 21.13 that Spl(L) has polar density 1/[L :K], and this is
also its Dirichlet density, by Proposition 21.10. The sets Spl(L) and {p ∈ C} both have
Dirichlet densities (by Theorem 22.14) and Spl(L) - {p ∈ C} (by assumption), so

1

[L : K]
= d(Spl(L)) ≤ d({p ∈ C}),

The LHS cannot be zero, so Corollary 22.16 implies that the RHS must be 1/[ImK :C], and
that L(1, χ) 6= 0 for all χ 6= χ0.

Corollary 22.17. Let C be a congruence subgroup of modulus m for a number field K. If
the ray class field K(m) exists then L(1, χ) 6= 0 for all characters χ 6= χ0 of modulus m.

Proof. Apply the previous corollary to L = K(m) and C = kerψK(m)/K = Rm
K .
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22.3 The conductor of an abelian extension

We now introduce another notion of conductor, one attached to an abelian extension of
number fields, which is defined as a product of local conductors attached to corresponding
abelian extensions of the local field Kv for each place v ∈MK .

Definition 22.18. Let L/K be a finite abelian extension of local fields. The conductor
c(L/K) is defined as follows.1 If K is archimedean then c(L/K) = ∞ when K ' R and
L ' C and c(L/K) = 1 otherwise. If K is nonarchimedean and p is the maximal ideal of
its valuation ring OK , then c(L/K) = pm, where

m := min{n : 1 + pn ⊆ NL/K(L×)}

(here 1 + pn is a subgroup of O×K , with 1 + p0 := O×K). If L/K is a finite abelian extension
of global fields then

c(L/K) :=
∏

v∈MK

c(Lw/Kv),

where Kv is the completion of K at v and Lw is the completion of L at a place w above v.
(the fact that L/K is Galois ensures that this does not depend on the choice of w).

The product defining c(L/K) is finite; it is not hard to show that only ramified primes
may divide the conductor. More generally, we have the following.

Proposition 22.19. Let L/K be a finite abelian extension. For each prime p of K we have

vp(c(L/K)) =


0 if and only if p is unramified,

1 if and only if p is ramified tamely,

≥ 2 if and only if p is ramified wildly.

Proof. See Problem Set 11.

The conductor c(L/K) of an abelian extension divides the discriminant ideal DL/K and
is divisible by the same set of primes, but the valuation of the conductor at these primes
is typically smaller than that of the discriminant. For example, the discriminant of the
extension Q(ζp)/Q is (p)p−2, but its conductor is (p).

22.4 Norm groups

We can now identify a candidate for the kernel of the Artin map ψm
L/K : ImK → Gal(L/K).

Recall from Lecture 6 that the norm map NL/K : IL → IK can be defined by∏
i

qni
i 7→

∏
i

pnifi
i ,

where fi := [Fqi :Fpi ] is the residue field degree.

1Many authors use f(L/K) rather than c(L/K) to denote the conductor, we use c to avoid confusion with
the residue field degree f .
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Definition 22.20. Let L/K be a finite abelian extension of number fields and let m be
a modulus for K divisible by the conductor of L/K. The norm group (or Takagi group)
associated to m is the congruence subgroup

Tm
L/K := Rm

KNL/K(ImL ),

where ImL denotes the subgroup of fractional ideals in IL that are coprime to mOL.

The norm group Tm
L/K contains every prime p of K coprime to m that splits completely

in L, since these primes all have residue field degree fp = 1 and therefore lie in the image
of the norm map NL/K , since NL/K(q) = pfp = p for every primes q of L above p. These
are precisely the primes that in the kernel of the Artin map ψm

L/K , thus we always have

kerψm
L/K ⊆ T

m
L/K .

The proof of Artin reciprocity amounts to proving that the reverse inclusion holds, which
implies, in particular, that kerψm

L/K contains Rm
K ⊆ Tm

L/K and is therefore a congruence
subgroup. As a first step in this direction we note the following.

Theorem 22.21. Let L/K be a Galois extension of number fields and let m be a modulus
for K. Then

[ImK : Tm
L/K ] ≤ [L : K].

Proof. Consider the congruence subgroup C = Tm
L/K . As noted above, Spl(L) - Tm

L/K , so
the inequality follows immediately from Corollary 22.16.

Corollary 22.22. Let χ 6= χ0 be a character for a modulus m of a number field K. If there
exists an abelian extension L/K for which Tm

L/K ⊆ kerχ then L(1, χ) 6= 0.

Proof. Spl(L) ∼ {p : p ∈ kerψm
L/K}, so kerψm

L/K ⊆ Tm
L/K ⊆ kerχ implies Spl(L) - kerχ,

and Corollary 22.16 then implies L(1, χ) 6= 0, since χ is a character for Tm
L/K

Theorem 22.21 is known as either the “first” or “second” fundamental inequality of class
field theory, depending on the author; it was proved first (by Weber) and originally called
the first fundamental inequality, but today is often (but not always) called the second
fundamental inequality. The reverse inequality is more difficult and is proved by other
methods; note that once we establish equality, we can conclude that kerψm

L/K = Tm
L/K ,

since we have already shown kerψm
L/K ⊆ T

m
L/K .

22.5 The main theorems of class field theory (ideal-theoretic version)

We can give a more precise statement of the main theorems of class field theory. Let m be
a modulus for a number field K. The three main theorems of class field theory state that:

• Existence: The ray class field K(m) exists.

• Completeness: If L/K is finite abelian then L ⊆ K(m) if and only c(L/K) |m.
In particular, every finite abelian L/K lies in a ray class field.

• Artin reciprocity: For each subextension L/K of K(m) we have kerψm
L/K = Tm

L/K

with conductor c(L/K) and a canonical isomorphism ClmK/T
m
L/K ' Gal(L/K).

Artin reciprocity gives us a commutative diagram of canonical bijections:
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{abelian L/K with c(L/K) |m} congruence subgroups C ⊆ ImK

{quotients of Gal(K(m)/K)} quotients of ClmK

←→
L7→Tm

L/K

←→ L7→Gal(L/K) ←→ C7→ImK/C

←→

ψm
L/K

22.6 The Hilbert class field

For any number field K the ray class field H for the trivial modulus has a special name: it
is known as the Hilbert class field of K and has several distinguishing properties. First, the
Galois group Gal(H/K) is isomorphic to the ideal class group ClK . Second, the extension
H/K is unramified, since it necessarily has conductor c(H/K) = (1). Moreover, H is the
maximal unramified abelian extension of K: every finite unramified abelian extension of K
must have trivial conductor, hence lie in H, and if there were an infinite unramified abelian
extension L/K it would necessarily contain a finite unramified abelian extension of K that
does not lie in H (consider K(α) for any α ∈ L not in H).

This demonstrates a remarkable fact: the maximal unramified abelian extension of a
number field is always a finite extension. Indeed, it is common to simply define the Hilbert
class field of a number field K as the maximal unramified abelian extension of K, rather
than as the ray class field K for the trivial modulus (of course the two coincide). It is not
at all obvious a priori that the maximal unramified abelian extension should be finite, since
many number fields have infinite unramified extensions (which are necessarily nonabelian).

Indeed, one way to construct such an extension is by considering a tower of Hilbert class
fields. Starting with a number field K0 := K, for each integer n ≥ 0 define Kn+1 to be the
be the Hilbert class field of Kn. This yields an infinite tower of finite abelian extensions

K0 ⊆ K1 ⊆ K2 ⊆ · · · ,

and we may then consider the field L :=
⋃
nKn. There are two possibilities: either we

eventually reach a field Kn with class number 1, in which case Km = Kn for all m ≥ n and
L/K is a finite unramified extension of K, or this does not happen and L/K is an infinite
unramified extension of K (which is necessarily nonabelian). It was a longstanding open
question as to whether the latter could occur, but in 1964 Golod and Shafarevich proved
that indeed it can; in particular, the field

K0 = Q(
√
−30030) = Q(

√
−2 · 3 · 5 · 7 · 11 · 13)

is the base of an infinite tower of Hilbert class field extensions.
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