
18.785 Number theory I
Lecture #21

Fall 2016
11/22/2016

21 Class field theory: ray class groups and ray class fields

In the Lecture 20 we proved the Kronecker-Weber theorem: every abelian extension L
of Q lies in a cyclotomic extension Q(ζm)/Q. The isomorphism Gal(Q(ζm)/Q) ' (Z/mZ)×

allows us to view Gal(L/Q) as a quotient of (Z/mZ)×. Conversely, for each quotient H
of (Z/mZ)×, there is a subfield L of Q(ζm) for which H ' Gal(L/Q). We would like to
make the correspondence between H and L explicit, and then generalize this setup to base
fields K other than Q. To do so we need the Artin map, which we briefly recall.

21.1 The Artin map

Let L/K be a finite Galois extension of global fields. For each prime p of K, the Galois
group Gal(L/K) acts on the set {q|p} of primes lying above p. For each q|p the stabilizer
of q under this action is the decomposition group Dq ⊆ Gal(L/K), and there is a natural
surjective homomorphism

πq : Dq → Gal(Fq/Fp)

σ 7→ σ := (a 7→ σ(a))

where a ∈ OL is any lift of a ∈ Fq := OL/q to OL and σ(a) is the reduction of σ(a) ∈ OL
modulo q; the automorphism σ ∈ Gal(Fq/Fp) is well-defined because σ ∈ Dq stablizes
q). When q is unramified the inertia group Iq := kerπq is trivial and the map πq is an
isomorphism. The Artin symbol (Definition 7.17) is defined by(

L/K

q

)
:= σq := π−1q (x 7→ x#Fp),

where (x 7→ x#Fp) ∈ Gal(Fq/Fp) is the Frobenius atomorphism, a canonical generator for
the cyclic group Gal(Fq/Fp). Equivalently, σq is the unique element of Gal(L/K) for which

σq(x) ≡ x#Fp mod q

for all x ∈ OL. The Frobenius elements σq for q|p are all conjugate (they form the Frobenius
class Frobp), and when L/K is abelian they coincide, in which case we may write σp instead
of σq and we have (or use Frobp = {σp} to denote σp), and write the Artin symbol as(

L/K

p

)
:= σp.

Now assume L/K is abelian, let m be an OK-ideal divisible by every ramified prime
of K, and let ImK denote the subgroup of fractional ideals I for which vp(I) = 0 for all p|m.
The Artin map (Definition 7.20) is the homomorphism

ψm
L/K : ImK → Gal(L/K)∏

p6 |m

pnp 7→
∏
p6 |m

(
L/K

p

)np

.

One of the main theorems of class field theory (which we will prove in this lecture) is that
the Artin map ψm

L/K is surjective. We can then identify Gal(L/K) with a quotient of ImK ,

allowing us to characterize all abelian extensions L/K in terms of quotients of ImK . This is
remarkable because the ideal m ⊆ OK and the ideal group ImK depend only on K, yet they
completely determine the possibilities for L.
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21.2 Class field theory for Q

We now specialize to K = Q, in which case the Kronecker-Weber theorem tells us that
every abelian extension L/K lies in a cyclotomic field Q(ζm). Each σ ∈ Gal(Q(ζm)/Q) is
determined by its action on ζm, and we have an isomorphism

ω : Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×

defined by σ(ζm) = ζ
ω(σ)
m . The primes p that ramify in Q(ζm) are precisely those that

divide m (by Corollary 10.21). For each prime p 6 | m the Frobenius element σp is the
unique σ ∈ Gal(Q(ζm)/Q) for which σ(x) ≡ xp mod q for any (equivalently, all) q|(p).
Thus ω(σp) = p mod m, and it follows that the Artin map induces an inverse isomorphism
(Z/mZ)× → Gal(Q(ζm)/Q): for every integer a coprime to m we have (a) ∈ ImQ and

ω−1(ā) =

(
Q(ζm)/Q

(a)

)
,

where ā = a mod m. Notice that (as you showed on Problem Set 4), the surjectivity of the
Artin map follows immediately, since a ranges over all integers coprime to m.1

Now let K be a subfield of Q(ζm). We cannot directly apply ω to Gal(L/Q), since
Gal(L/Q) is a quotient of Gal(Q(ζm)/Q) (not a subgroup!), but we still have the Artin map
ImQ → Gal(L/Q) available; notice that the modulus m works for L as well as Q(ζm), since
any primes that ramify in L also ramify in Q(ζm) and therefore dividem. The Artin map fac-
tors through the quotient map Gal(Q(ζm)/Q)→ Gal(L/Q) ' Gal(Q(ζm)/Q)/Gal(Q(ζm)/L)
induced by restriction (send each σ ∈ Gal(Q(ζm)/Q) to σ|L ∈ Gal(L/Q)). That is, for any
a ∈ (Z/mZ)× we have (

L/Q
(a)

)
=

(
Q(ζm)/Q

(a)

)∣∣L .
To see this, write L = Q(α) with α ∈ OL; then α ∈ OQ(ζm) = Z[ζm], so α = f(ζm) for some

f ∈ Z[x]. For any prime p - m, if we put σ :=
(L/Q

(p)

)
and τ :=

(Q(ζm)/Q
(p)

)
, then

σ(α) = σ(f(ζm)) ≡q f(ζm)p = f(ζpm) ≡q f(τ(ζm)) = τ(f(ζm)),

where the equivalences are modulo any prime q|p of L (note that f(τ(ζm)) = τ(f(ζm)) is
conjugate to α = f(ζm) and therefore lies in OL so this makes sense).

To sum up, we can now say the following about abelian extensions of Q:

• Existence: for every modulus m we have a ray class field : an abelian extension
ramified only at primes p|m with Galois group isomorphic to (Z/mZ)× (take Q(ζm)).

• Completeness: every abelian extension lies in a ray class field (Kronecker-Weber).

• Reciprocity: for each abelian extension L of Q contained in the ray class field of
modulusm the Artin map induces a surjective homomorphism (Z/mZ)× → Gal(L/Q).

All of these statements can be made more precise; in particular, we can refine the
first two statements so that the fields are uniquely determined up to isomorphism, and we
will give an explicit description of the kernel of the Artin map that allows us to identify
Gal(L/K) with a quotient of (Z/mZ)×. We will address these details in the next lecture.
Let us first consider how to generalize these statements to base fields K other than Q; in
particular, we want to define the ray class groups that will play the role of (Z/mZ)×.

1In particular, there is no need to invoke Dirichlet’s theorem on primes in arithmetic progressions.
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21.3 Moduli and ray class groups

Recall that for a global field K we use MK to denote its set of places (equivalence classes of
absolute values). We generically denote places by the symbol v, but for finite places, those
arising from a discrete valuation associated to a prime p of K (by which we mean a nonzero
prime ideal of OK), we may write p in place of v. We write v|∞ to indicate that v is an
infinite place (one not arising from a prime of K); when K is a number field infinite places
are archimedean and may be real (Kv ' R) or complex (Kv ' C).

Definition 21.1. Let K be a global field. A modulus (or cycle) m for K is a function
MK → Z≥0 with finite support such that for v|∞ we have m(v) ≤ 1 with m(v) = 0 unless v
is a real place. We view m as a formal product

∏
vm(v) over MK , which we may factor as

m = m0m∞, m0 :=
∏
p6 |∞

pm(p), m∞ :=
∏
v|∞

vm(v),

where m0 corresponds to an OK-ideal and m∞ represents a subset of the real places of K;
we use #m∞ to denote the number of real places in the support of m. If m and n are two
moduli for K we say that m divides n if m(v) ≤ n(v) for all v ∈MK and define gcd(m, n) and
lcm(m, n) in the obvious way. We use 1 to denote the trivial modulus (the zero function).

We use IK to denote the ideal class group of OK and define the following notation:2

• a fractional ideal a ∈ IK is coprime to m (or prime to m) if vp(a) = 0 for all p|m0.

• ImK ⊆ IK is the subgroup of fractional ideals coprime to m.

• Km ⊆ K× is the subgroup of elements α ∈ K× for which (α) ∈ ImK .

• Km,1 ⊆ Km is the subgroup of elements α ∈ Km for which vp(α−1) ≥ vp(m0) for p|m0

and αv > 0 for v|m∞ (here αv ∈ Kv ' R is the image of α under K ↪→ Kv).

• Rm
K ⊆ ImK is the subgroup of principal fractional ideals (α) ∈ ImK with α ∈ Km,1.

The groups Rm
K are called rays or ray groups.

Definition 21.2. The ray class group of K for the modulus m is the quotient

ClmK := ImK/Rm
K .

When m is the trivial modulus, this is just the usual class group ClK := cl(OK); in general
the class group ClK is a quotient of the ray class group ClmK .

Remark 21.3. If m(v) = 1 for every real place v ∈ MK then ClmK is called a narrow ray
class group. The narrow ray class group with m0 = (1) is also called the narrow class group
and the usual class group ClK = clOK is then sometimes called the wide class group to
better distinguish the two. But note that the wide class group is a quotient of the narrow
class group, so in general it is smaller, despite what the terminology might suggest (yes
this is confusing, but it appears throughout the literature so we are stuck with it).

Example 21.4. For K = Q and m = (5) we have we have Km = {a/b : a, b 6≡ 0 mod 5},
Km,1 = {a/b : a ≡ b 6≡ 0 mod 5}. Thus

2This notation varies from author to author; there is unfortunately no universally accepted notation for
these objects (in particular, many authors put some but not all of the m’s in subscripts). Things will improve
when we come to the adelic/idelic formulation of class field theory where there is more consistency.
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• ImK = {(1), (1/2), (2), (1/3), (2/3), (3/2), (3), (1/4), (3/4), (4/3), (4), (1/6), (6), . . .}.
• Rm

K = {(1), (2/3), (3/2), (1/4), (4), (6), (1/6), (2/7), (7/2), . . .}.

You might not have expected (2/3) ∈ Rm
K , but note that −2/3 ∈ Km,1 and (−2/3) = (2/3).

The ray class group ClmK = ImK/Rm
K = {[(1)], [(2)]} ' (Z/5Z)×/{±1}. But for the modulus

m = (5)∞ we have Rm
K = {(1), (6), (1/6), (2/7), (7/2), . . .} and ClmK ' (Z/5Z)×.

Lemma 21.5. Let A be a Dedekind domain and let a be an A-ideal. Every ideal class in
cl(A) can be represented by an ideal coprime to a.

Proof. Let I =
∏

p p
np be the unique factorization of some nonzero fractional ideal I of A.

We may write I = I1I2 with I1 :=
∏

p-a p
np and I2 :=

∏
p|a p

np coprime. Choose a uniformizer

πp for each p|a and put α :=
∏

p|a π
−np
p . Then [αI] = [I] and αI is coprime to a.

Theorem 21.6. Let m be a modulus for a global field K. We have an exact sequence

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1

and a canonical isomorphism

Km/Km,1 ' {±1}#m∞ × (OK/m0)
×.

Proof. Let us consider the composition of the maps Km,1 ⊆ Km and α 7→ (α):

Km,1 f−→ Km g−→ ImK .

The kernel of f is trivial, the kernel of g ◦ f is O×K ∩Km,1 (since (α) = (1) ⇐⇒ α ∈ O×K),
the kernel of g is O×K , the cokernel of f is Km/Km,1, the cokernel of g ◦ f is ClmK = ImK/Rm

K

(by definition), and the cokernel of g is ClK (by Lemma 21.5). Applying the snake lemma
(see [2, Lemma 5.13], for example) to the commutative diagram with exact rows

1 Km,1 Km Km/Km,1 1

1 ImK ImK 1

←→ ←↩ →f

←→ g◦f

←→

←→ g

←→

←→ π

←→ ←→∼ ← →

yields the exact sequence ker g ◦ f → ker g → kerπ → coker g ◦ f → coker g → cokerπ:

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1,

where the initial 1 follows from the fact that f is injective (and kerπ = coker f).
We can write each α ∈ Km as α = a/b with a, b ∈ OK such that (a) and (b) are coprime

to m0 and to each other. The ideals (a) and (b) are uniquely determined by α (even though
a and b are not), since a/b = a′/b′ ⇒ ab′ = a′b ⇒ (a)(b′) = (a′)(b), and since (a) and (b)
are coprime we must have (a) = (a′) and (b) = (b′) (by unique factorization of ideals).

We now define the homomorphism

ϕ : Km →

∏
v|m∞

{±1}

× (OK/m0)
×

α 7→

∏
v|m∞

sgn(αv)

× (ᾱ),
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where ᾱ = āb̄−1 ∈ (OK/m0)
× (here ā, b̄ are the images of a, b ∈ OK in OK/m0, and they

both lie in (OK/m0)
× because (a) and (b) are coprime to m0). The ring (OK/m0)

× is iso-
morphic to

∏
p|m0

(OK/pm(p))×, by the Chinese remainder theorem, and weak approximation

(Theorem 8.5) implies that ϕ is surjective. The kernel of ϕ is clearly Km,1, thus ϕ induces
an isomorphism Km/Km,1 ' {±}#m∞×(OK/m0)

×. This isomorphism is canonical, because
ᾱ depends only on the uniquely determined ideals (a) and (b) (if we replace a with a′ = au
for some u ∈ O×K we must replace b with b′ = bu).

Corollary 21.7. Let K be a number field and let m be a modulus for K. The ray class
group ClmK is a finite abelian group whose cardinality hmK := #ClmK is given by

hmK =
φ(m)hK

[O×K : O×K ∩Km,1]
,

where hK := #ClK and φ(m) := #(Km/Km,1) = φ(m∞)φ(m0), with

φ(m∞) = 2#m∞ , φ(m0) = #(OK/m0)
× = N(m0)

∏
p|m0

(1−N(p)−1).

In particular, hK |hmK and hmK |(hKφ(m)).

Explicitly computing the integer hmK is not a trivial problem, but there are algorithms
for doing so; see [1], which considers this problem in detail.

21.4 Polar density

We now want to prove the surjectivity of the Artin map for finite abelian extensions L/K
of number fields; as explained in §21.2, we already know this for K = Q. In order to do so
we first introduce a new way to measure the density of a set of primes that is defined in
terms of a generalization of the Dedekind zeta function.

Definition 21.8. Let K be a number field and let S be a set of primes of K. The partial
Dedekind zeta function associated to S is the complex function

ζK,S(s) :=
∏
p∈S

(1−N(p)−s)−1,

which converges to a holomorphic function on Re(s) > 1 (by the same argument we used
for ζK(s) in Lecture 18).

If S is finite then ζK,S(s) is certainly holomorphic (and nonzero) on a neighborhood of 1.
If S contains all but finitely many primes of K then it differs from ζK(s) by a holomorphic
factor and therefore extends to a meromorphic function with a simple pole at s = 1, by
Theorem 19.12.

Between these two extremes the function ζK,S(s) may or may not extend to a function
that is meromorphic on a neighborhood of 1, but if it does, or more generally, if some power
of it does, then we can use the order of the pole at 1 (or the absence of a pole) to measure
the density of S.
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Definition 21.9. If for some integer n ≥ 1 the function ζnK,S extends to a meromorphic
function on a neighborhood of 1, the polar density of S is defined by

ρ(S) :=
m

n
, m = −ords=1ζ

n
K,S(s)

(so m is the order of the pole at s = 1, if one is present). Note that if ζn1
K,S and ζn2

K,s both
extend to a meromorphic function on a neighborhood of 1 then we necessarily have

n2ords=1ζ
n1
K,S(s) = ords=1ζ

n1n2
K,S = n1ords=1ζ

n2
K,S ,

which implies that ρ(S) does not depend on the choice of n.

In Lecture 17 we encountered two other notions of density, the Dirichlet density

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

(the equality of the two expressions for d(S) follows from the fact that ζK(s) has a simple
pole at s = 1, see Problem Set 9), and the natural density

δ(S) := lim
x→∞

#{p ∈ S : N(p) ≤ x}
#{p : N(p) ≤ x}

.

On Problem Set 9 you proved that if S has a natural density then it has a Dirichlet density
and the two coincide. We now show that the same is true of the polar density.

Proposition 21.10. Let S be a set of primes of a number field K. If S has a polar density
then it has a Dirichlet density and the two are equal.

Proof. Suppose S has polar density ρ(S) = m/n. By taking the Laurent series expansion
of ζnK,S(s) as s = 1 and factoring out the leading nonzero term we can write

ζK,S(s)n =
a

(s− 1)m

(
1 +

∑
n>1

an(s− 1)n

)
,

for some a ∈ C×. We must have a ∈ R>0, since ζK,S(s) ∈ R>0 for s ∈ R>1 and therefore
lims→1(s− 1)mζK,S(s)n is a positive real number. Taking logs of both sides yields

n
∑
p∈S

N(p)−s ∼ m log
1

s− 1
(as s→ 1+),

which implies that S has Dirichlet density d(S) = m/n.

Corollary 21.11. Let S be a set of primes of a number field K. If S has both a polar
density and a natural density then the two coincide.

We should note that not every set of primes with a natural density has a polar density,
since the later is always a rational number while the former need not be.

Recall that a degree-1 prime in a number field K is a prime with residue field degree 1
over Q, equivalently, a prime p whose absolute norm N(p) = [OK : p] is prime.
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Proposition 21.12. Let S and T denote sets of primes in a number field K and let P be
the set of all primes of K.

(a) If S is finite then ρ(S) = 0; if P − S is finite then ρ(S) = 1.

(b) If S ⊆ T both have polar densities, then ρ(S) ≤ ρ(T ).

(c) If two sets S and T have finite intersection and any two of the sets S, T , and S ∪ T
have polar densities then so does the third and ρ(S ∪ T ) = ρ(S) + ρ(T ).

(d) The polar density of all degree-1 primes is 1 and the polar density of any set of primes
is determined by its subset of degree-1 primes.

Proof. We first note that for any finite set S, the function ζK,S(s) is a finite product of
nonvanishing entire functions and therefore holomorphic and nonzero everywhere (including
at s = 1). If the symmetric difference of S and T is finite, then ζK,S(s)f(s) = ζK,T (s)g(s)
for some nonvanishing functions f(s) and g(s) holomorphic on C. Thus if S and T differ
by a finite set, then ρ(S) = ρ(T ) whenever either set has a polar density

Part (a) follows, since ρ(∅) = 0 and ρ(P) = 1 (note that ζK,P(s) = ζK(s), and
ords=1ζK(s) = −1, by Theorem 19.12).

Part (b) follows from the analogous statement for Dirichlet density proved on Problem
Set 9.

For (c) we may assume S and T are disjoint (by the argument above), in which case
ζK,S∪T (s)n = ζK,S(s)nζK,T (s)n for all n ≥ 1, and the claim follows.

For (d), let S1 be the set of all degree-1 primes and let S2 = P −S, so that P = S1tS2.
For each rational prime p there are at most n := [K : Q] (in fact n/2) primes p|p in S2,
each of which has absolute norm N(p) ≥ p2. It follows by comparison with ζ(2s)n that the
product defining ζK,S2(s) converges absolutely to a holomorphic function on Re(s) > 1/2
and is therefore holomorphic (and nonvanishing) on a neighborhood of 1; thus ρ(S2) = 0
and ρ(S1) = 1. For any set of primes S we have ρ(S∩S2) = 0, so ρ(S) = ρ(S∩S1) whenever
ρ(S ∩ S1) exists, by (c).

For a finite Galois extension of number fields L/K, let Spl(L/K) denote the set of primes
of K that split completely in L. When K is clear from context we may just write Spl(L).

Theorem 21.13. Let L/K be a Galois extension of number fields of degree n. Then

ρ(Spl(L)) = 1/n.

Proof. Let S be the set of degree-1 primes that split completely in L; by Proposition 21.12,
it suffices to show ρ(S) = 1/n. Recall that p splits completely in L if and only if both
the ramification index ep and residue field degree fp are equal to 1. Let T be the set of
primes q of L that lie above some p ∈ S. For each q ∈ T lying above p ∈ S we have
NL/K(q) = pfp = p, so N(q) = N(NL/K(q)) = N(p), thus q is a degree-1 prime, since p is.

On the other hand, if q is any unramified degree-1 prime of L and p = q ∩ OK , then
N(q) = N(NL/K(q)) = N(pfp) is prime, so we must have fp = 1, and ep = 1 since q is
unramified, so p splits completely in L. Only finitely many primes ramify, so all but finitely
many of the degree-1 primes in L lie in T and therefore ρ(T ) = 1, by Proposition 21.12.
Each p ∈ S has exactly n primes q ∈ T lying above it (since p splits completely), thus

ζL,T (s) =
∏
q∈T

(1−N(q)−s)−1 =
∏
q∈T

(1−N(NL/K(q))−s)−1 =
∏
p∈S

(1−N(p)−s)−n = ζK,S(s)n.

Therefore ρ(S) = 1
nρ(T ) = 1

n as desired.
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Corollary 21.14. If L/K is a finite extension of number fields with Galois closure M/K
of degree n, then ρ(Spl(L)) = ρ(Spl(M)) = 1/n

Proof. A prime p of K splits completely in L if and only if it splits completely in all the
conjugates of L in M ; the Galois closure M is the compositum of the conjugates of L, so p
splits completely in L if and only if it splits completely in M .

Corollary 21.15. Let L/K be a finite Galois extension of number fields with Galois group
G := Gal(L/K) and let H be a normal subgroup of G. The set S of primes for which
Frobp ⊆ H has polar density ρ(S) = #H/#G.

Proof. Let F = LH ; then F/K is Galois (since H is normal) and Gal(F/K) ' G/H. For
each unramified prime p of K, the Frobenius class Frobp lies in H if and only if every
σq ∈ Frobp acts trivially on LH = F , which occurs if and only if p splits completely in F .
By Theorem 21.13, the density of this set of primes is 1/[F : K] = #H/#G.

If S and T are sets of primes whose symmetric difference is finite, then either ρ(S) = ρ(T )
or neither set has a polar density. Let us write S ∼ T to indicate that two sets of primes
have finite symmetric difference (this is clearly an equivalence relation), and partially order
sets of primes by defining S - T ⇔ S ∼ S ∩ T (all but finitely many of the primes in S lie
in T ). If S and T have polar densities, then S - T implies ρ(S) ≤ ρ(T ).

Theorem 21.16. If L/K and M/K are two finite Galois extensions of number fields then

L ⊆M ⇐⇒ Spl(M) - Spl(L)⇐⇒ Spl(M) ⊆ Spl(L),

L = M ⇐⇒ Spl(M) ∼ Spl(L)⇐⇒ Spl(M) = Spl(L),

and the map L 7→ Spl(L) is an injection from the set of finite Galois extensions of K (inside
some fixed K) to sets of primes of K that have a positive polar density.

Proof. The implications L ⊆ M ⇒ Spl(M) ⊆ Spl(L) ⇒ Spl(M) - Spl(L) are clear, so it
suffices to show if Spl(M) - Spl(L)⇒ L ⊆M .

A prime p of K splits completely in the compositum LM if and only if it splits completely
in both L and M : the forward implication is clear and for the reverse we first note that
if p splits completely in both L and M then it certainly splits completely in L ∩M , so we
may assume K = L ∩M ; we then have Gal(LM/K) ' Gal(L/K)×Gal(M/K), and if the
decomposition subgroups of all primes above p are trivial in both Gal(L/K) and Gal(M/K)
then the same applies in Gal(LM/K). Thus Spl(LM) = Spl(L) ∩ Spl(M).

It follows that Spl(M) - Spl(L) ⇒ Spl(LM) ∼ Spl(M). By Theorem 21.13, we have
ρ(Spl(M)) = 1/[M : K] and ρ(Spl(LM) = 1/[LM : K], thus Spl(LM) ∼ Spl(M) implies

[LM : K] = ρ(Spl(LM)) = ρ(Spl(M)) = [M : K],

in which case LM = M and L ⊆M . This proves Spl(M) - Spl(L)⇒ L ⊆M , so the three
conditions in the first line of biconditionals are all equivalent, and this immediately implies
the second line of biconditionals. The last statement of the theorem is clear, since Spl(L)
has positive polar density, by Theorem 21.13.

18.785 Fall 2016, Lecture #21, Page 8



21.5 Ray class fields and Artin reciprocity

As a special case of Corollary 21.14, if F/K is a finite extension of number fields in which
all but finitely many primes split completely, then [F : K] = 1 and therefore F = K. This
implies that the Artin map is surjective.

Theorem 21.17. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by all ramified primes. The Artin map ψm

L/K : ImK → Gal(L/K) is
surjective.

Proof. Let H ⊆ Gal(L/K) be the image of ψm
L/K and let F = LH be its fixed field. For

each prime p ∈ ImK the automorphism ψm
L/K(p) acts trivially on F , which implies that

ψm
F/K(p) = 1 and therefore p splits completely in F . The group ImK contains all but finitely

many primes p of K, so the polar density of the set of primes of K that split completely in
F is 1, therefore [F : K] = 1 and H = Gal(L/K).

The theorem implies that we have an exact sequence

1→ kerψm
L/K → I

m
K → Gal(L/K)→ 1.

One of the key results of class field theory is that for a suitable choice of the modulus m,
we have Rm

K ⊆ kerψm
L/K . This implies that the Artin map induces an isomorphism between

Gal(L/K) and a quotient of the ray class group ClmK = ImK/Rm
K .

If Rm
K = kerψm

L/K , then we have an isomorphism Gal(L/K) ' ClmK . Such a field L is
called the ray class field of K for the modulus m. When K = Q the ray class group for
m = (m)∞ is the cyclotomic field Q(ζm). For K 6= Q it is far from obvious that ray class
fields exist, but this is indeed the case; this is one of the main theorems of class field theory.
Once we have a ray class field L/K for the modulus m, the Artin map allows us to relate
subfields of L to quotients of the ray class group ClmK ' Gal(L/K) in a way that we will
make more precise in the next lecture; this is known as Artin reciprocity.

The ray class field for the trivial modulus m = 1 has a special name; it is called the
Hilbert class field of K. As we will prove in the next lecture, it is the maximal unramified
abelian extension of K (which is the usual way to define the Hilbert class field), and it is
unique up to isomorphism. The Hilbert class field L of K has the remarkable property that
Gal(L/K) ' ClK ; it is a Galois extension of K whose Galois group is canonically isomorphic
to the class group of K. Every ray class field of K necessarily contains the Hilbert class
field. For K = Q the Hilbert class field is trivial, but in general a ray class field should
really be viewed as a tower of two abelian extensions of K, the first of which is independent
of the modulus m.
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