20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ under which H can be viewed as the character group of the finite abelian group $\mathrm{Gal}(K/\mathbb{Q})$ and the Dedekind zeta function of K factors as

$$\zeta_K(x) = \prod_{\chi \in H} L(s, \chi).$$

Now suppose we are given an arbitrary finite abelian extension K/\mathbb{Q} . Does the character group of $\operatorname{Gal}(K/\mathbb{Q})$ correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function $\zeta_K(S)$ as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of \mathbb{Q} lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2] and provided a partial proof for extensions of odd degree. Weber [6] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [4]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [5, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 20.1. Every finite abelian extension of \mathbb{Q} lies in a cyclotomic field $\mathbb{Q}(\zeta_m)$.

There is also a local version.

Theorem 20.2. Every finite abelian extension of \mathbb{Q}_p lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

Our first step is to show that it suffices to prove the local version.

Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber theorem.

Proof. Let K/\mathbb{Q} be a finite abelian extension of global fields. For each ramified prime p of \mathbb{Q} , pick a prime $\mathfrak{p}|p$ and let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} . The extension $K_{\mathfrak{p}}/\mathbb{Q}_p$ is finite abelian (by Theorem 11.20, its Galois group is isomorphic to the decomposition group $D_{\mathfrak{p}}$, which is a subgroup of $\mathrm{Gal}(K/\mathbb{Q})$), and the local Kronecker-Weber theorem implies that $K_{\mathfrak{p}} \subseteq \mathbb{Q}_p(\zeta_{m_p})$ for some integer $m_p \geq 1$. Let $e_p = v_p(m_p)$ and put $m := \prod_p p^{e_p}$ (this is a finite product, since it ranges over ramified primes), and let $L = K(\zeta_m)$. We will show $L = \mathbb{Q}(\zeta_m)$, which implies $K \subseteq \mathbb{Q}(\zeta_m)$.

The field $L = K \cdot \mathbb{Q}(\zeta_m)$ is Galois, since it is the splitting field of $x^m - 1$ over K, and it is abelian, since its Galois group is isomorphic to a subgroup of $\operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ (as explained below, we can always regard the Galois group of a compositum of Galois extensions K_i as a subgroup of the direct product of the Galois groups of the K_i). Let \mathfrak{q} be a prime of L lying above one of our chosen $\mathfrak{p}|p$; then \mathfrak{q} lies above p and the completion $L_{\mathfrak{q}}$ of L at \mathfrak{q} is a finite abelian extension of \mathbb{Q}_p . Let $F_{\mathfrak{q}}$ be the maximal unramified extension of \mathbb{Q}_p in $L_{\mathfrak{q}}$. Then $L_{\mathfrak{q}}/F_{\mathfrak{q}}$ is totally ramified and $\operatorname{Gal}(L_{\mathfrak{q}}/F_{\mathfrak{q}})$ is isomorphic to the inertia group $I_p := I_{\mathfrak{q}} \subseteq \operatorname{Gal}(L/\mathbb{Q})$, by Theorem 11.20.

By Corollary 10.21, for n|m we have $\zeta_n \in F_{\mathfrak{q}}$ if and only if $p \nmid n$, thus $L_{\mathfrak{q}} = F_{\mathfrak{q}}(\zeta_{p^{e_p}})$, and $F_{\mathfrak{q}} \cap \mathbb{Q}(\zeta_{p^{e_p}}) = \mathbb{Q}_p$, since $\mathbb{Q}(\zeta_{p^{e_p}})/\mathbb{Q}_p$ is totally ramified. Therefore

$$I_p \simeq \operatorname{Gal}(L_{\mathfrak{q}}/F) \simeq \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{e_p}})/\mathbb{Q}_p) \simeq (\mathbb{Z}/p^{e_p}\mathbb{Z})^{\times}.$$

Now let I be the subgroup of $Gal(L/\mathbb{Q})$ generated by the inertia groups I_p for p|m. Then

$$\#I \le \prod_p \#I_p = \prod_p \phi(p^{e_p}) = \phi(m) = [\mathbb{Q}(\zeta_m) : \mathbb{Q}].$$

The fixed field of I is an unramified extension of \mathbb{Q} , hence trivial (by Corollary 14.20). Therefore $I = \operatorname{Gal}(L/\mathbb{Q})$ and

$$[L:\mathbb{Q}] = \#I \le [\mathbb{Q}(\zeta_m):\mathbb{Q}],$$

so $L = \mathbb{Q}(\zeta_m)$ as claimed and $K \subseteq \mathbb{Q}(\zeta_m)$.

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic extensions of prime-power degree. Recall that if L_1 and L_2 are two Galois extensions of a field K then their compositum $L := L_1L_2$ is Galois over K and

$$\operatorname{Gal}(L/K) \simeq \{(\sigma_1, \sigma_2) : \sigma_1|_{L_1 \cap L_2} = \sigma_2|_{L_1 \cap L_2}\} \subseteq \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K).$$

The inclusion on the RHS is an equality if and only if $L_1 \cap L_2 = K$. If L/K is an abelian extension with $\operatorname{Gal}(L/K) \simeq H_1 \times H_2$ then by defining $L_2 := L^{H_1}$ and $L_1 := L^{H_2}$ we have $L = L_1L_2$ with $L_1 \cap L_2 = K$, and $\operatorname{Gal}(L_1/K) \simeq H_1$ and $\operatorname{Gal}(L_2/K) \simeq H_2$. It follows from the structure theorem for finite abelian groups that we may decompose any finite abelian extension L/K into a compositum $L = L_1 \cdots L_n$ of linearly disjoint cyclic extensions L_i/K of prime-power degree. If each L_i lies in $K(\zeta_{m_i})$ for some integer $m_i \geq 1$, then if we put $m := m_1 \cdots m_n$ we will have $L \subseteq \mathbb{Q}(\zeta_m)$.

To prove the local Kronecker-Weber theorem it suffices to consider cyclic ℓ -extensions K/\mathbb{Q}_p (cyclic extensions whose degree is a power of a prime ℓ). There two distinct cases: $\ell = p$ and $\ell \neq p$. We first consider the easier case: $\ell \neq p$.

20.2 The local Kronecker-Weber theorem for $\ell \neq p$

Proposition 20.4. Let K/\mathbb{Q}_p be a cyclic extension of degree ℓ^r for some prime $\ell \neq p$. Then K lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

Proof. Let F be the maximal unramified extension of \mathbb{Q}_p in K; then F is cyclotomic, by Corollary 10.20, so let $F = \mathbb{Q}_p(\zeta_n)$. The extension K/F is totally ramified, and it must be tamely ramified, since the ramification index is necessarily a power of ℓ and therefore not divisible by p. By Theorem 11.9, we have $K = F(\pi^{1/e})$ for some uniformizer π , with e = [K : F]. We may assume that $\pi = -pu$ for some $u \in \mathcal{O}_F^{\times}$, since F/\mathbb{Q}_p is unramified: if $\mathfrak{q}|p$ is the maximal ideal of \mathcal{O}_F then the valuation $v_{\mathfrak{q}}$ extends v_p with index $e_{\mathfrak{q}} = 1$ (by Theorem 9.2), so $v_{\mathfrak{q}}(-pu) = v_p(-pu) = 1$. The field $K = F(\pi^{1/e})$ then lies in the compositum of $F((-p)^{1/e})$ and $F(u^{1/e})$, and we will show that both fields lie in a cyclotomic extension of \mathbb{Q}_p .

The extension $F(u^{1/e})/F$ is unramified, since $p \not\mid e$ and u is a unit (the discriminant of $x^e - u$ is not divisible by p), thus $F(u^{1/e})/\mathbb{Q}_p$ is unramified and therefore cyclotomic, by Corollary 10.20, so let $F(u^{1/e}) = \mathbb{Q}_p(\zeta_k)$ for some integer $k \geq 1$. The field $K(u^{1/e}) = K$.

 $\mathbb{Q}_p(\zeta_k)$ is a compositum of abelian extensions, so $K(u^{1/e})/\mathbb{Q}_p$ is abelian, and it contains the subextension $\mathbb{Q}_p((-p)^{1/e})/\mathbb{Q}_p$, which must be Galois (since it lies in an abelian extension) and totally ramified (by Theorem 11.5, since it is an Eisenstein extension). The field $\mathbb{Q}_p((-p)^{1/e})$ contains ζ_e (take ratios of roots of x^e+p) and is totally ramified, but $\mathbb{Q}_p(\zeta_e)/\mathbb{Q}_p$ is unramified (since $p \not\mid e$), so we must have $\mathbb{Q}_p(\zeta_e) = \mathbb{Q}_p$. Therefore e|(p-1), and by Lemma 20.5 below we have

$$\mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p),$$

It follows that $F((-p)^{1/e}) = F \cdot \mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p(\zeta_n) \cdot \mathbb{Q}_p(\zeta_p)$. If we now put m = npk, the cyclotomic field $\mathbb{Q}_p(\zeta_m)$ contains both $F(u^{1/e})$ and $F((-p)^{1/e})$, and therefore K. \square

Lemma 20.5. For any prime p we have $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$.

Proof. Let $\alpha = (-p)^{1/(p-1)}$. Then α is a root of the Eisenstein polynomial $x^{p-1} + p$, so the extension $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\alpha)$ is totally ramified of degree p-1, and α is a uniformizer (by Proposition 11.4 and Theorem 11.5). Let $\pi = \zeta_p - 1$. The minimal polynomial of π is

$$f(x) := \frac{(x+1)^p - 1}{x} = x^{p-1} + px^{p-2} + \dots + p,$$

which is Eisenstein, so $\mathbb{Q}_p(\pi) = \mathbb{Q}_p(\zeta_p)$ is also totally ramified of degree p-1, and π is a uniformizer. We have $u := -\pi^{p-1}/p \equiv 1 \mod \pi$, so u is a unit in the ring of integers of $\mathbb{Q}_p(\zeta_p)$. If we now put $g(x) = x^{p-1} - u$ then $g(1) \equiv 0 \mod \pi$ and $g'(1) = p-1 \not\equiv 0 \mod \pi$, so by Hensel's Lemma 9.16 we can lift 1 to a root β of g(x) in $\mathbb{Q}_p(\zeta_p)$.

We then have $p\beta^{p-1} = pu = -\pi^{p-1}$, so $(\pi/\beta)^{p-1} + p = 0$, and therefore $\pi/\beta \in \mathbb{Q}_p(\zeta_p)$ is a root of the minimal polynomial of α . Since $\mathbb{Q}_p(\zeta_p)$ is Galois, this implies that $\alpha \in \mathbb{Q}_p(\zeta_p)$, and since $\mathbb{Q}_p(\alpha)$ and $\mathbb{Q}_p(\zeta_p)$ both have degree p-1, the two fields must be equal. \square

To complete the proof of the local Kronecker-Weber theorem, we need to address the case $\ell = p$, that is, we need to show that every cyclic p-extension of \mathbb{Q}_p lies in a cyclotomic field. Here we need to deal with wild ramification, which complicates matters significantly. To deal with this we first recall a bit of the theory of Kummer extensions.

20.3 A little Kummer theory

Let K be a field, let $n \geq 1$ be prime to the characteristic of K, and assume K contains a primitive nth root of unity ζ_n . If L/K is an extension of the form $L = K(\sqrt[n]{a})$, then L is the splitting field of $f(x) = x^n - a$ over K (the roots $\zeta_n^i \alpha$ of f(x) all lie in L), hence Galois; here $\sqrt[n]{a}$ denotes a particular root of $x^n - a$, but since L contains all of them, it makes no difference which one we pick. The extension L/K is cyclic, since we have an injective homomorphism

$$\operatorname{Gal}(L/K) \hookrightarrow \langle \zeta_n \rangle \simeq \mathbb{Z}/n\mathbb{Z}$$

$$\sigma \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}},$$

which is an isomorphism whenever $x^n - a$ is irreducible.

Kummer's key observation is that the converse holds. In order to prove this we first recall a basic (but often omitted) lemma from Galois theory, originally due to Dedekind.

Lemma 20.6. Let L/K be a finite extension of fields. The set $\operatorname{Aut}_K(L)$ is linearly independent in the L-vector space of all functions $L \to L$.

Proof. Suppose not. Let $f := c_1\sigma_1 + \cdots + c_r\sigma_r = 0$ with $c_i \in L$, $\sigma_i \in \operatorname{Aut}_K(L)$, and r minimal; we must have r > 1, the c_i nonzero, and the σ_i distinct. Choose $\alpha \in L$ so $\sigma_1(\alpha) \neq \sigma_r(\alpha)$ (possible since $\sigma_1 \neq \sigma_r$). We have $f(\beta) = 0$ for all $\beta \in L$, and the same applies to $f(\alpha\beta) - \sigma_1(\alpha)f(\beta)$, which yields a shorter relation $c'_2\sigma_2 + \cdots + c'_r\sigma_r = 0$, where $c'_i = c_i\sigma_i(\alpha) - c_i\sigma_1(\alpha)$ with $c'_1 = 0$, which is nontrivial because $c'_r \neq 0$, a contradiction. \square

Corollary 20.7. Let L/K be a cyclic extension of degree n with Galois group $\langle \sigma \rangle$ and suppose L contains an nth root of unity ζ_n . Then $\sigma(\alpha) = \zeta_n \alpha$ for some $\alpha \in L$.

Proof. The automorphism σ is a linear transformation of L with characteristic polynomial $x^n - 1$; by Lemma 20.6, this must be its minimal polynomial, since $\{1, \sigma^1, \ldots, \sigma^{n-1}\}$ is linearly independent. Therefore ζ_n is eigenvalue of σ , and the lemma follows.

Remark 20.8. Corollary 20.7 is a special case of HILBERT'S THEOREM 90, which replaces ζ_n with any element u of norm $N_{L/K}(u) = 1$; see [3, Thm. VI.6.1], for example.

Lemma 20.9. Let K be a field, let $n \ge 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. If L/K is a cyclic extension of degree n then $L = K(\sqrt[n]{a})$ for some $a \in K$.

Proof. Let L/K be a cyclic extension of degree n with $Gal(L/K) = \langle \sigma \rangle$. By Corollary 20.7, there exists an element $\alpha \in L$ for which $\sigma(\alpha) = \zeta_n \alpha$. We have

$$\sigma(\alpha^n) = \sigma(\alpha)^n = (\zeta_n \alpha)^n = \alpha^n,$$

thus $a = \alpha^n$ is invariant under the action of $\langle \sigma \rangle = \operatorname{Gal}(L/K)$ and therefore lies in K. Moreover, the orbit $\{\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha\}$ of α under the action of $\operatorname{Gal}(L/K)$ has order n, so $L = K(\alpha) = K(\sqrt[n]{a})$ as desired.

Definition 20.10. Let K be a field with algebraic closure \overline{K} , let $n \geq 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. The *Kummer pairing* is the map

$$\langle \cdot, \cdot \rangle \colon \operatorname{Gal}(\overline{K}/K) \times K^{\times} \to \langle \zeta_n \rangle$$

$$\langle \sigma, a \rangle \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}$$

where $\sqrt[n]{a}$ is any nth root of a in $\in \overline{K}^{\times}$. If α and β are two nth roots of a, then $(\alpha/\beta)^n = 1$, so $\alpha/\beta \in \langle \zeta_n \rangle \subseteq K$ is fixed by σ and $\sigma(\beta)/\beta = \sigma(\beta)/\beta \cdot \sigma(\alpha/\beta)/(\alpha/\beta) = \sigma(\alpha)/\alpha$, so the value of $\langle \sigma, a \rangle$ does not depend on the choice of $\sqrt[n]{a}$. If $a \in K^{\times n}$, then $\langle \sigma, a \rangle = 1$ for all $\sigma \in \operatorname{Gal}(\overline{K}, K)$, so the Kummer pairing depends only on the image of a in $K^{\times}/K^{\times n}$; thus we may also view it as a pairing on $\operatorname{Gal}(\overline{K}, K) \times K^{\times}/K^{\times n}$.

Theorem 20.11. Let K be a field, let $n \geq 1$ be prime to the characteristic of K with $\zeta_n \in K$. The Kummer pairing induces an isomorphism

$$\Phi \colon K^{\times}/K^{\times n} \to \operatorname{Hom}\left(\operatorname{Gal}(\overline{K}/K), \langle \zeta_n \rangle\right)$$
$$a \mapsto (\sigma \mapsto \langle \sigma, a \rangle).$$

Proof. For each $a \in K^{\times} - K^{\times n}$, if we pick an nth root $\alpha \in \overline{K}$ of a then the extension $K(\alpha)/K$ will be non-trivial and some $\sigma \in \operatorname{Gal}(\overline{K}/K)$ must act nontrivially on α . For this σ we have $\langle \sigma, a \rangle \neq 1$, so $a \notin \ker \Phi$ and Φ is therefore injective.

To show surjectivity, let $f: \operatorname{Gal}(\overline{K}/K) \to \langle \zeta_n \rangle$ be a homomorphism, let $d = \# \operatorname{im} f$, let $H = \ker f$, and let $L = \overline{K}^H$. Then $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, so L/K is a cyclic extension of degree d, and Lemma 20.9 implies that $L = K(\sqrt[d]{a})$ for some $a \in K$. If we put e = n/d and consider the homomorphisms $\Phi(a^{me})$ for $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, these homomorphisms are all distinct (because the a^{me} are distinct modulo $K^{\times n}$ and Φ is injective) and they all have the same kernel and image as f (their kernels have the same fixed field L because L contains all the dth roots of a). There are $\#(\mathbb{Z}/d\mathbb{Z})^{\times} = \#\operatorname{Aut}(\mathbb{Z}/d\mathbb{Z})$ distinct isomorphisms $\operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, one of which corresponds to f, and each corresponds to one of the $\Phi(a^{me})$. It follows that $f = \Phi(a^{me})$ for some $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, thus Φ is surjective. \square

Given a finite subgroup A of $K^{\times}/K^{\times n}$, we can choose $a_1, \ldots, a_r \in K^{\times}$ so that the images \bar{a}_i of the a_i in $K^{\times}/K^{\times n}$ form a basis for the abelian group A; this means

$$A = \langle \bar{a}_1 \rangle \times \cdots \times \langle \bar{a}_r \rangle \simeq \mathbb{Z}/n_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/n_r \mathbb{Z},$$

where $n_i|n$ is the order of a_i in A. For each a_i , the fixed field of the kernel of $\Phi(a_i)$ is a cyclic extension of K isomorphic to $L_i := K(\sqrt[n]{\sqrt{a_i}})$, as in the proof of Theorem 20.11. The fields L_i are linearly disjoint over K (because the a_i correspond to independent generators of A), and their compositum $L = K(\sqrt[n]{\sqrt{a_1}}, \dots \sqrt[n]{\sqrt{a_r}})$ has Galois group $\operatorname{Gal}(L/K) \simeq A$, an abelian group whose exponent divides n; such fields L are called n-Kummer extensions of K.

Conversely, given an n-Kummer extension L/K, we can iteratively apply Lemma 20.9 to put L in the form $L = K(\sqrt[n_1]{a_1}, \ldots, \sqrt[n_l]{a_r})$ with each $a_i \in K^{\times}$ and $n_i|n$, and the images of the a_i in $K^{\times}/K^{\times n}$ then generate a subgroup A corresponding to L as above. We thus have a 1-to-1 correspondence between finite subgroups of $K^{\times}/K^{\times n}$ and (finite) n-Kummer extensions of K (this correspondence also extends to infinite subgroups provided we put a suitable topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle situations where this is not necessarily the case, we rely on the following lemma, in which we restrict to the case that n is a prime (or an odd prime power) so that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic (the definition of ω in the statement of the lemma does not make sense otherwise).

Lemma 20.12. Let n be a prime (or an odd prime power), let F be a field of characteristic prime to n, let $K = F(\zeta_n)$, and let $L = K(\sqrt[n]{a})$ for some $a \in K^{\times}$. Define the homomorphism $\omega \colon \operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ by $\zeta_n^{\omega(\sigma)} = \sigma(\zeta_n)$. If L/F is abelian then $\sigma(a)/a^{\omega(\sigma)} \in K^{\times n}$ for all $\sigma \in \operatorname{Gal}(K/F)$.

Proof. Let $G = \operatorname{Gal}(L/F)$, let $H = \operatorname{Gal}(L/K) \subseteq G$, and let A be the subgroup of $K^{\times}/K^{\times n}$ generated by a. The Kummer pairing induces a bilinear pairing $H \times A \to \langle \zeta_n \rangle$ that is compatible with the Galois action of $\operatorname{Gal}(K/F) \simeq G/H$. In particular, we have

$$\langle h, a^{\omega(\sigma)} \rangle = \langle h, a \rangle^{\omega(\sigma)} = \sigma(\langle h, a \rangle) = \langle \sigma(h), \sigma(a) \rangle = \langle h, \sigma(a) \rangle$$

for all $\sigma \in \operatorname{Gal}(K/F)$ and $h \in H$; the Galois action on H is by conjugation (lift σ to G and conjugate there), but it is trivial because G is abelian (so $\sigma(h) = h$). The isomorphism Φ induced by the Kummer pairing is injective, so $a^{\omega(\sigma)} \equiv \sigma(a) \mod K^{\times n}$.

20.4 The local Kronecker-Weber theorem for $\ell = p > 2$

We are now ready to prove the local Kronecker-Weber theorem in the case $\ell = p > 2$.

Theorem 20.13. Let K/\mathbb{Q}_p be a cyclic extension of odd degree p^r . Then K lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

Proof. There are two obvious candidates for K, namely, the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, which by Corollary 10.20 is an unramified extension of degree p^r , and the index p-1 subfield of the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{r+1}})$, which by Corollary 10.21 is a totally ramified extension of degree p^r (the p^{r+1} -cyclotomic polynomial $\Phi_{p^{r+1}}(x)$ has degree $\phi(p^{r+1}) = p^r(p-1)$ and remains irreducible over \mathbb{Q}_p). If K is contained in the compositum of these two fields then $K \subseteq \mathbb{Q}_p(\zeta_m)$, where $m := (p^{p^r}-1)(p^{r+1})$ and the theorem holds. Otherwise, the field $K(\zeta_m)$ is a Galois extension of \mathbb{Q}_p with

$$\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p) \simeq \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^s\mathbb{Z}$$

for some s > 0; the first factor comes from the Galois group of $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, the second two factors come from the Galois group of $\mathbb{Q}_p(\zeta_{p^{r+1}})$ (note $\mathbb{Q}_p(\zeta_{p^{r+1}}) \cap \mathbb{Q}_p(\zeta_{p^{p^r}-1}) = \mathbb{Q}_p$), and the last factor comes from the fact that we are assuming $K \not\subseteq \mathbb{Q}_p(\zeta_m)$, so $\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p(\zeta_m))$ is nontrivial and must have order p^s for some $s \in [1, r]$.

It follows that the abelian group $Gal(K(\zeta_m)/\mathbb{Q}_p)$ has a quotient isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, and the subfield of $K(\zeta_m)$ corresponding to this quotient is an abelian extension of \mathbb{Q}_p with Galois group isomorphic $(\mathbb{Z}/p\mathbb{Z})^3$. By Lemma 20.14 below, no such field exists.

To prove that \mathbb{Q}_p admits no $(\mathbb{Z}/p\mathbb{Z})^3$ -extension our strategy is to use Kummer theory to show that the corresponding subgroup of $\mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ given by Theorem 20.11 must have p-rank 2 and therefore cannot exist.

Lemma 20.14. For p > 2 no extension of \mathbb{Q}_p has Galois group isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$.

Proof. Suppose for the sake of contradiction that K is an extension of \mathbb{Q}_p with Galois group $\operatorname{Gal}(K/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^3$. Then K/\mathbb{Q}_p is linearly disjoint from $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$, since the order of $G := \operatorname{Gal}(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$ is not divisible by p, and $\operatorname{Gal}(K(\zeta_p)/\mathbb{Q}_p(\zeta_p)) \simeq (\mathbb{Z}/p\mathbb{Z})^3$ is a p-Kummer extension. There is thus a subgroup $A \subseteq \mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, for which $K(\zeta_p) = \mathbb{Q}_p(\zeta_p, A^{1/p})$, where $A^{1/p} := \{a^{1/p} : a \in A\}$ (here we identify elements of A by representatives in $\mathbb{Q}_p(\zeta_p)^{\times}$ that are determined only up to pth powers).

For any $a \in A$, the extension $\mathbb{Q}_p(\zeta_p, \sqrt[p]{a})/\mathbb{Q}_p$ is abelian, so by Lemma 20.12, we have

$$\sigma(a)/a^{\omega(\sigma)} \in \mathbb{Q}_p(\zeta_p)^{\times p} \tag{1}$$

for all $\sigma \in G$, where $\omega \colon G \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^{\times}$ is the isomorphism defined by $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$.

We may take $\pi = \zeta_p - 1$ as a uniformizer for $\mathbb{Q}_p(\zeta_p)$, which we note is a totally ramified extension of \mathbb{Q}_p of degree p-1 and must have residue field $\mathbb{Z}/p\mathbb{Z}$. For each $a \in A$ we have

$$v_{\pi}(a) = v_{\pi}(\sigma(a)) \equiv \omega(\sigma)v_{\pi}(a) \bmod p,$$

thus $(1 - \omega(\sigma))v_{\pi}(a) \equiv 0 \mod p$, for all $\sigma \in G$, hence for all $\omega(\sigma) \in \omega(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$; since p > 2, this implies $v_{\pi}(a) \equiv 0 \mod p$. Now a is determined only up to pth-powers, so after multiplying by $\pi^{-v_{\pi}(a)}$ we may assume $v_{\pi}(a) = 0$, and after multiplying by a suitable power of $\zeta_{p-1}^p = \zeta_{p-1}$, we may assume $a \equiv 1 \mod \pi$, since the image of ζ_{p-1} generates the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of the residue field.

We may thus assume that $A \subseteq U_1/U_1^p$, where $U_1 := \{u \equiv 1 \mod \pi\}$. Each $u \in U_1$ can be written as a power series in π with integer coefficients in [0, p-1] and constant coefficient 1.

We have $\zeta_p \in U_1$, since $\zeta_p = 1 + \pi$, and $\zeta_p^b = 1 + b\pi + O(\pi^2)$ for $b \in [0, p-1]$. Thus for any $a \in A \subseteq U_1$, we can choose b so that for some $c \in \mathbb{Z}$ and $e \in \mathbb{Z}_{\geq 2}$ we have

$$a = \zeta_p^b (1 + c\pi^e + O(\pi^{e+1})).$$

For $\sigma \in G$ we have

$$\frac{\sigma(\pi)}{\pi} = \frac{\sigma(\zeta_p - 1)}{\zeta_p - 1} = \frac{\zeta_p^{\omega(\sigma)} - 1}{\zeta_p - 1} = \zeta_p^{\omega(\sigma) - 1} + \dots + \zeta_p + 1 \equiv \omega(\sigma) \bmod \pi,$$

since each term in the sum is congruent to 1 modulo $\pi = (\zeta_p - 1)$; here we are representing $\omega(\sigma) \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ as an integer in [1, p-1]. Thus $\sigma(\pi) \equiv \omega(\sigma)\pi \mod \pi$ and

$$\sigma(a) = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)^e \pi^e + O(\pi^{e+1})).$$

We also have

$$a^{\omega(\sigma)} = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)\pi^e + O(\pi^{e+1})).$$

As we proved for a above, any $u \in U_1$ can be written as $u = \zeta_p^b u_1$ with $u_1 \equiv 1 \mod \pi^2$. Each interior term in the binomial expansion of $u_1^p = (1 + O(\pi^2))^p$ other than leading 1 is a multiple of $p\pi^2$ with $v_{\pi}(p\pi^2) = p-1+2 = p+1$; if follows that $u^p = u_1^p \equiv 1 \mod \pi^{p+1}$. Thus every element of U_1^p is congruent to 1 modulo π^{p+1} , and as you will show on the problem set, the converse holds, that is, $U_1^p = \{u \equiv 1 \mod \pi^{p+1}\}.$ We know from (1) that $\sigma(a)/a^{\omega(\sigma)} \in U_1^p$, so $\sigma(a) = a^{\omega(\sigma)}(1 + O(\pi^{p+1}))$ and therefore

$$\sigma(a) \equiv a^{\omega(\sigma)} \mod \pi^{p+1}$$
.

For $e \leq p$ this is possible only if $\omega(\sigma) = \omega(\sigma)^e$ for every $\sigma \in G$, equivalently, for every $\omega(\sigma) \in \sigma(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$, but then $e \equiv 1 \mod (p-1)$ and we must have $e \geq p$, since $e \geq 2$.

We have shown that every $a \in A$ is represented by an element $\zeta_p^b(1+c\pi^p+O(\pi^{p+1})) \in U_1$ with $b, c \in \mathbb{Z}$, and therefore lies in the subgroup of U_1/U_1^p generated by ζ_p and $(1+\pi^p)$, which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a subgroup of $(\mathbb{Z}/p\mathbb{Z})^2$. But this contradicts $A \simeq (\mathbb{Z}/p\mathbb{Z})^3$.

For p=2 there is an extension of \mathbb{Q}_2 with Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$, the cyclotomic field $\mathbb{Q}_2(\zeta_{24}) = \mathbb{Q}_2(\zeta_3) \cdot \mathbb{Q}_2(\zeta_8)$, so the proof we used for p > 2 will not work. More generally, the unramified cyclotomic field $\mathbb{Q}_2(\zeta_{2^{2r}-1})$ has Galois group $\mathbb{Z}/2^r\mathbb{Z}$, and the totally ramified cyclotomic field $\mathbb{Q}_2(\zeta_{2r+2})$ has Galois group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^r\mathbb{Z}$. Their compositum L has Galois group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2^r\mathbb{Z})^2$. If K/\mathbb{Q}_2 is a cyclic extension of degree 2^r that does not lie in L, then one can show that $Gal(K \cdot L/\mathbb{Q}_2)$ must admit a quotient isomorphic to either $(\mathbb{Z}/2\mathbb{Z})^4$, or $(\mathbb{Z}/4\mathbb{Z})^3$; the proof then proceeds by showing that no such extensions of \mathbb{Q}_2 exists. See [5, pp. 329–331] for details.

References

[1] David Hilbert, Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klass (1896), 29–39.

¹The expression $O(\pi^n)$ denotes a power series in π that is divisible by π^n .

- [2] Leopold Kronecker, Uber die algebraisch auflösbaren Gleichungen I (1853), in Leopold Kronecker's Werke, Part 4 (ed. K. Hensel), AMS Chelsea Publishing, 1968.
- [3] Serge Lang, Algebra, 3rd edition, Springer, 2002.
- [4] Olaf Neumann, Two proofs of the Kronecker-Weber theorem "according to Kronecker, and Weber", J. Reine Angew. Math. **323** (1981),105–126.
- [5] Lawrence C. Washington, *Introduction to cyclotomic fields*, 2nd edition, Springer, 1997.
- [6] Heinrich M. Weber, Theorie der Abel'schen Zahlkörper, Acta Mathematica 8 (1886), 193–263.