11 Totally ramified extensions and Krasner's lemma

In the previous lecture we showed that in the AKLB setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal \mathfrak{q} and $[L:K] = n = e_{\mathfrak{q}}f_{\mathfrak{q}}$. Assuming the residue field extension is separable (always true if K is a local field), by decomposing the extension if necessary we can always reduce to the case that L/K is either unramified or totally ramified, and we showed that in the unramified case $(e_q = 1)$, if K is a local field then $L \simeq K(\zeta_{q^n-1})$. We now consider the totally ramified case $(f_{\mathfrak{q}} = 1)$.

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal \mathfrak{p} . A monic polynomial

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} \in A[x]$$

is Eisenstein (or an Eisenstein polynomial) if $a_i \in \mathfrak{p}$ for $0 \leq i < n$ and $a_0 \notin \mathfrak{p}^2$; equivalently, $v_{\mathfrak{p}}(a_i) \geq 1$ for $0 \leq i < n$ and $v_{\mathfrak{p}}(a_0) = 1$.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and maximal ideal \mathfrak{p} , and let $f \in A[x]$ be Eisenstein. Then f is irreducible in both A[x] and K[x].

Proof. Suppose f = gh with $g, h \notin A$ and put $f = \sum_i f_i x^i$, $g = \sum_i g_i x^i$, $h = \sum_i h_i x^i$. We have $f_0 = g_0 h_0 \in \mathfrak{p} - \mathfrak{p}^2$, so exactly one of g_0, h_0 lies in \mathfrak{p} . Without loss of generality assume $g_0 \notin \mathfrak{p}$, and let $i \ge 0$ be the least *i* for which $h_i \notin \mathfrak{p}$; such an *i* exists because the reduction of h(x) modulo \mathfrak{p} is not zero, since $g(x)h(x) \equiv f(x) \equiv x^n \mod \mathfrak{p}$. We then have

$$f_i = g_0 h_i + g_1 h_{i-1} + \dots + g_{i-1} h_1 + g_i h_0,$$

with the LHS in \mathfrak{p} and all but the first term on the RHS in \mathfrak{p} , which is a contradiction. Thus f is irreducible in A[x]. Noting that the DVR A is a PID (hence a UFD), f is also irreducible in K[x], by Gauss's Lemma.

Remark 11.3. We can apply Lemma 11.2 to a polynomial f(x) over a Dedekind domain A that is Eisenstein over a localization $A_{\mathfrak{p}}$; the rings $A_{\mathfrak{p}}$ and A have the same fraction field K and f is then irreducible in K[x], hence in A[x].

Proposition 11.4. Let A be a DVR and let $f \in A[x]$ be an Eisenstein polynomial. Then $B := A[x]/(f(x)) = A[\pi]$ is a DVR with uniformizer π , the image of x in A[x]/(f(x)).

Proof. Let \mathfrak{p} be the maximal ideal of A. We have $f \equiv x^n \mod \mathfrak{p}$, so by Lemma 10.13 the ideal $\mathfrak{q} = (\mathfrak{p}, x) = (\mathfrak{p}, \pi)$ is the only maximal ideal of B. Let $f = \sum f_i x^i$; then $\mathfrak{p} = (f_0)$, since $v_{\mathfrak{p}}(f_0) = 1$. Therefore $\mathfrak{q} = (f_0, \pi)$, and $f_0 = -f_1\pi - f_2\pi^2 - \cdots - \pi^n \in (\pi)$, so $\mathfrak{q} = (\pi)$. The unique maximal ideal of B is thus principal, so B is a DVR and π is a uniformizer. \Box

Theorem 11.5. Assume AKLB, let A be a complete DVR, and let π be any uniformizer for B. Then L/K is totally ramified if and only if $B = A[\pi]$ and the minimal polynomial of π is Eisenstein.

Proof. Let n = [L : K], let \mathfrak{p} be the maximal ideal of A, let \mathfrak{q} be the maximal ideal of B (which we recall is a complete DVR, by Theorem 10.7), and let π be a uniformizer for B

with minimal polynomial f. If $B = A[\pi]$ and f is Eisenstein, then as in Proposition 11.4 we have $\mathfrak{p} = \mathfrak{q}^n$, so $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}} = n$ and L/K is totally ramified.

We now suppose L/K is totally ramified. Then $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index n, which implies $v_{\mathfrak{q}}(K) = n\mathbb{Z}$. The set $\{\pi^0, \pi^1, \pi^2, \ldots, \pi^{n-1}\}$ is linearly independent over K, since the valuations $0, \ldots, n-1$ are distinct modulo $v_{\mathfrak{q}}(K) = n\mathbb{Z}$: the valuations of the nonzero terms in any linear combination $z = \sum_{i=0}^{n-1} z_i \pi^i$ must be distinct and we cannot have z = 0unless every term is zero. Thus $L = K(\pi)$.

Let $f = \sum_{i=0}^{n} f_i x^i \in A[x]$ be the minimal polynomial of π (note $\pi \in \mathfrak{q} \subseteq B$, so π is integral over A). We have $v_{\mathfrak{q}}(f(\pi)) = v_{\mathfrak{q}}(0) = \infty$, and this implies that the terms of $f(\pi) = \sum_{i=0}^{n} f_i \pi^i$ cannot all have distinct valuations; indeed the valuations of two terms of minimal valuation must coincide (by the contrapositive of the nonarchimedean triangle equality). So let i < j be such that $v_{\mathfrak{q}}(a_i\pi^i) = v_{\mathfrak{q}}(a_j\pi^j)$. As noted above, the valuations of $a_i\pi^i$ for $0 \le i < n$ are all distinct modulo n, so i = 0 and j = n. We have

$$v_{\mathfrak{q}}(a_0\pi^0) = v_q(a_n\pi^n) = v_q(\pi^n) = n$$

thus $v_{\mathfrak{q}}(a_0\pi^0) = nv_{\mathfrak{p}}(a_0) = n$ and $v_{\mathfrak{p}}(a_0) = 1$. And $v_{\mathfrak{q}}(a_i\pi^i) \ge v_{\mathfrak{q}}(a_0\pi^0) = n$ for 0 < i < n(since $a_0\pi^0$ is a term of minimal valuation), and since $v_{\mathfrak{q}}(\pi^i) < n$ for i < n we must have $v_{\mathfrak{q}}(a_i) > 0$ and therefore $v_{\mathfrak{p}}(a_i) > 0$. It follows that f is Eisenstein, and Proposition 11.4 then implies that $A[\pi]$ is a DVR, and in particular, integrally closed, so $B = A[\pi]$. \Box

Example 11.6. Let $K = \mathbb{Q}_3$. As shown in an earlier problem set, there are just three distinct quadratic extensions of \mathbb{Q}_3 : $\mathbb{Q}_3(\sqrt{2})$, $\mathbb{Q}_3(\sqrt{3})$, and $\mathbb{Q}_3(\sqrt{6})$. The extension $\mathbb{Q}_3(\sqrt{2})$ is the unique unramified quadratic extension of \mathbb{Q}_3 , and we note that it can be written as a cyclotomic extension $\mathbb{Q}_3(\zeta_8)$. The other two are both ramified, and can be defined by the Eisenstein polynomials $x^2 - 3$ and $x^2 - 6$.

Definition 11.7. Assume AKLB with A a complete DVR and separable residue field k of characteristic $p \ge 0$. We say that L/K is *tamely ramified* if $p \nmid e_{L/K}$ (always true if p = 0 or if $e_{L/K} = 1$); note that an unramified extension is also tamely ramified. We say that L/K is *wildly ramified* if $p|e_{L/K}$; this can occur only when p > 0. If L/K is totally ramified, then we say it is *totally tamely ramified* if $p \nmid e_{L/K}$ and *totally wildly ramified* otherwise.

Example 11.8. Let π be a uniformizer for A. The extension $L = K(\pi^{1/e})$ is a totally ramified extension of degree e, and it is totally wildly ramified if p|e.

Theorem 11.9. Assume AKLB with A a complete DVR and separable residue field k of characteristic $p \ge 0$. Then L/K is totally tamely ramified if and only if $L = K(\pi^{1/e})$ for some uniformizer π of A with $p \nmid e$.

Proof. Let v be the unique valuation of L extending the valuation of K with index $e = e_{L/K}$, and let π_K and π_L be uniformizers for A and B, respectively. Then $v(\pi_K) = e$ and $v(\pi_L) = 1$. Thus $v(\pi_L^e) = e = v(\pi_K)$, so $u\pi_K = \pi_L^e$ for some unit $u \in B^{\times}$. We have $L = K(\pi_L)$, since L is totally ramified, by Theorem 11.5, and $f_{L/K} = 1$ so B and A have the same residue field k. Let us choose π_K so that $u \equiv 1 \mod \mathfrak{q}$, and let $g(x) = x^e - u$. Then $\bar{g} = x^e - 1$, and $\bar{g}'(1) = e \neq 0$ (since $p \nmid e$), so we can use Hensel's Lemma 9.16 to lift the root 1 of \bar{g} in $k = B/\mathfrak{q}$ to a root r of g in B. Now let $\pi = \pi_L/r$. Then $L = K(\pi)$, and $\pi^e = \pi_L^e/r^e = \pi_L^e/u = \pi_K$, so $L = K(\pi_K^{1/e})$ as desired. \Box

11.2 Krasner's lemma

We continue to work with a complete DVR A with fraction field K. In the previous lecture we proved that the absolute value | | on K can be uniquely extended to any finite extension L/K by defining $|x| := |N_{L/K}(x)|^{1/n}$, where n = [L : K] (see Theorem 10.7). As noted in Remark 10.8, if \overline{K} is an algebraic closure of K, we can compute the absolute value of any $\alpha \in \overline{K}$ by simply taking norms from $K(\alpha)$ down to K; this defines an absolute value on \overline{K} and it is the unique absolute value on \overline{K} that extends the absolute value on K.

Lemma 11.10. Let K be the fraction field of a complete DVR with algebraic closure \overline{K} and absolute value | | extended to \overline{K} . For $\alpha \in \overline{K}$ and $\sigma \in \operatorname{Aut}_K(\overline{K})$ we have $|\sigma(\alpha)| = |\alpha|$.

Proof. The elements α and $\sigma(\alpha)$ must have the same minimal polynomial $f \in K[x]$ (since $\sigma(f(\alpha)) = f(\sigma(\alpha))$), so $N_{K(\alpha)/K}(\alpha) = f(0) = N_{K(\sigma(\alpha))/K}(\sigma(\alpha))$, by Proposition 4.44. It follows that $|\sigma(\alpha)| = |N_{K(\sigma(\alpha))/K}(\alpha)|^{1/n} = |N_{K(\alpha)/K}(\alpha)|^{1/n} = |\alpha|$, where $n = \deg f$. \Box

Definition 11.11. Let K be the fraction field of a complete DVR with absolute value | | extended to an algebraic closure \overline{K} . For $\alpha, \beta \in \overline{K}$, we say that β belongs to α if $|\beta - \alpha| < |\beta - \sigma(\alpha)|$ for all $\sigma \in \operatorname{Aut}_K(\overline{K})$ with $\sigma(\alpha) \neq \alpha$, that is, β is strictly closer to α than it is to any of its conjugates. By the nonarchimedean triangle inequality, this is equivalent to requiring that $|\beta - \alpha| < |\alpha - \sigma(\alpha)|$ for all $\sigma(\alpha) \neq \alpha$.

Lemma 11.12 (Krasner's lemma). Let K be the fraction field of a complete DVR and let $\alpha, \beta \in \overline{K}$ with α separable. If β belongs to α then $K(\alpha) \subseteq K(\beta)$.

Proof. Suppose not. Then $\alpha \notin K(\beta)$, so there is an automorphism $\sigma \in \operatorname{Aut}_{K(\beta)}(\overline{K}/K(\beta))$ for which $\sigma(\alpha) \neq \alpha$ (here we are using the separability of α : the extension $K(\alpha, \beta)/K(\beta)$ is separable and nontrivial, so there must by an element of $\operatorname{Hom}_{K(\beta)}(K(\alpha, \beta), \overline{K})$ that moves α). By Lemma 11.10, for any $\sigma \in \operatorname{Aut}_{K(\beta)}(\overline{K}/K(\beta))$ we have

$$|\beta - \alpha| = |\sigma(\beta - \alpha)| = |\sigma(\beta) - \sigma(\alpha)| = |\beta - \sigma(\alpha)|,$$

since σ fixes β . But this contradicts the hypothesis that β belongs to α , since $\sigma(\alpha) \neq \alpha$. \Box

Remark 11.13. Krasner's lemma can also be viewed as another version of "Hensel's lemma" in the sense that it characterizes Henselian fields (fraction fields of Henselian rings); although named after Krasner [1] it was proved earlier by Ostrowksi [2].

Definition 11.14. For a field K with absolute value | | we define the L^1 -norm on K[x] via

$$||f||_1 := \sum_i |f_i|,$$

where $f = \sum_{i} f_i x^i \in K[x]$.

Lemma 11.15. Let K be a field with absolute value | | and let $f = \prod_{i=1}^{n} (x - \alpha_i) \in K[x]$ have roots $\alpha_1, \ldots, \alpha_n \in L$, where L/K is a field with an absolute value that extends | |. Then $|\alpha| < ||f||_1$ for every root α of f.

Proof. Exercise.

Proposition 11.16. Let K be the fraction field of a complete DVR and let $f \in K[x]$ be a monic irreducible separable polynomial. There is a positive real number $\delta = \delta(f)$ such that for every monic polynomial $g \in K[x]$ with $||f - g||_1 < \delta$ the following holds:

Every root β of g belongs to a root α of f for which $K(\beta) = K(\alpha)$.

In particular, g is separable and irreducible.

Proof. We first note that we can always pick $\delta < 1$, in which case any monic $g \in K[x]$ with $||f - g||_1 < \delta$ must have the same degree as f, so we can assume deg $g = \deg f$. Let us fix an algebraic closure \overline{K} of K with absolute value || extending the absolute value on K. Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in \overline{K} , and write

$$f(x) = \prod_{i} (x - \alpha_i) = \sum_{i=0}^{n} f_i x^i$$

Let ϵ be the lesser of 1 and the minimum distance $|\alpha_i - \alpha_j|$ between any two distinct roots of f. We now define

$$\delta := \delta(f) := \left(\frac{\epsilon}{2(\|f\|_1 + 1)}\right)^n > 0,$$

and note that $\delta < 1$, since $||f||_1 \ge 1$ and $\epsilon \le 1$. Let $g = \sum_i g_i x^i$ be a monic polynomial of degree n with $|f - g|_1 < \delta$; then

$$||g||_1 \le ||f||_1 + ||f - g||_1 < ||f||_1 + \delta.$$

For any root β be of g in \overline{K} we have

$$|f(\beta)| = |f(\beta) - g(\beta)| = |(f - g)(\beta)| = \left|\sum_{i=0}^{n} (f_i - g_i)\beta^i\right| \le \sum_{i=0}^{n} |f_i - g_i||\beta|^i.$$

By Lemma 11.15, we have $|\beta| < ||g||_1$, and $||g||_1 \ge 1$, so $||g||_1^i \le ||g||_1^n$ for $0 \le i \le n$. Thus

$$|f(\beta)| < ||f - g||_1 \cdot ||g||_1^n < \delta(||f||_1 + \delta)^n < \delta(||f||_1 + 1)^n \le (\epsilon/2)^n$$

and

$$|f(\beta)| = \prod_{i=1}^{n} |\beta - \alpha_i| < (\epsilon/2)^n,$$

so $|\beta - \alpha_i| < \epsilon/2$ for some unique α_i to which β must belong (by our choice of ϵ).

By Krasner's lemma, $K(\alpha) \subseteq K(\beta)$, and we have $n = [K(\alpha) : K] \leq [K(\beta) : K] \leq n$, so $K(\alpha) = K(\beta)$. The minimal polynomial h of β is separable and irreducible, and it divides g and has the same degree. Both g and h are monic, so g = h is separable and irreducible. \Box

11.3 Local extensions come from global extensions

Let \hat{L} be a local field. From our classification of local fields (Theorem 9.10), we know \hat{L} is a finite extension of $\hat{K} = \mathbb{Q}_p$ (some prime $p \leq \infty$) or $\hat{K} = \mathbb{F}_q((t))$ (some prime power q). We also know that the completion of a global field at any of its nontrivial absolute values is such a local field (Corollary 9.8). It thus reasonable to ask whether \hat{L} is the completion of a corresponding global field L that is a finite extension of $K = \mathbb{Q}$ or $K = \mathbb{F}_q(t)$.

More generally, for any fixed global field K and local field \hat{K} that is the completion of K with respect to one of its nontrivial absolute values $| \cdot |$, we may ask whether every finite

extension of local fields \hat{L}/\hat{K} necessarily corresponds to an extension of global fields L/K, where \hat{L} is the completion of L with respect to one of its absolute values (whose restriction to K must be equivalent to $| | \rangle$). The answer is yes. In order to simplify matters we restrict our attention to the case where \hat{L}/\hat{K} is separable, but this is true in general.

Theorem 11.17. Let K be a global field with a nontrivial absolute value $| \cdot |$, and let \hat{K} be the completion of K with respect to $| \cdot |$. Every finite separable extension \hat{L} of \hat{K} is the completion of a finite separable extension L of K with respect to an absolute value that restricts to $| \cdot |$. Moreover, one can choose L so that \hat{L} is the compositum of L and \hat{K} and $[\hat{L} : \hat{K}] = [L : K]$.

Proof. Let \hat{L}/\hat{K} be a separable extension of degree n. Let us first suppose that | | is archimedean. Then K is a number field and \hat{K} is either \mathbb{R} or \mathbb{C} ; the only nontrivial case is when $\hat{K} = \mathbb{R}$ and n = 2, and we may then assume that $\hat{L} \simeq \mathbb{C}$ is $\hat{K}(\sqrt{-d})$ where $-d \in \mathbb{Z}_{<0}$ is a nonsquare in K (such a -d exists because K/\mathbb{Q} is finite). We may assume without loss of generality that | | is the Euclidean absolute value on $\hat{K} \simeq \mathbb{R}$ (it must be equivalent to it), and uniquely extend | | to $L = K(\sqrt{-d})$ by requiring $|\sqrt{-d}| = \sqrt{d}$. Then \hat{L} is the completion of L with respect to | |, and clearly $[\hat{L} : \hat{K}] = [L : K] = 2$, and \hat{L} is the compositum of L and \hat{K} .

We now suppose that | | is nonarchimedean, in which case the valuation ring of \hat{K} is a complete DVR and | | is induced by the corresponding discrete valuation. By the primitive element theorem (Theorem 4.12), we may assume $\hat{L} = \hat{K}[x]/(f)$ where $f \in \hat{K}[x]$ is monic, irreducible, and separable. The field K is dense in its completion \hat{K} , so we can find a monic $g \in K[x] \subseteq \hat{K}[x]$ that is arbitrarily close to f: such that $||g - f||_1 < \delta$ for any $\delta > 0$. It then follows from Proposition 11.16 that $\hat{L} = \hat{K}[x]/(g)$ (and that g is separable). The field \hat{L} is a finite separable extension of the fraction field of a complete DVR, so by Theorem 10.7 it is itself the fraction field of a complete DVR and has a unique absolute value that extends the absolute value | | on \hat{K} .

Now let L = K[x]/(g). The polynomial g is irreducible in $\hat{K}[x]$, hence in K[x], so $[L:K] = \deg g = [\hat{L}:\hat{K}]$. The field \hat{L} contains both \hat{K} and L, and it is clearly the smallest field that does (since g is irreducible in $\hat{K}[x]$), so \hat{L} is the compositum of \hat{K} and L. The absolute value on \hat{L} restricts to an absolute value on L extending the absolute value | | on K, and \hat{L} is complete, so \hat{L} contains the completion of L with respect to | |. On the other hand, the completion of L with respect | | contains both L and \hat{K} , so it must be \hat{L} .

In the preceding theorem, when the local extension \hat{L}/\hat{K} is Galois one might ask whether the corresponding global extension L/K is also Galois, and whether $\operatorname{Gal}(\hat{L}/\hat{K}) \simeq \operatorname{Gal}(L/K)$. As shown by the following example, this need not be the case.

Example 11.18. Let $K = \mathbb{Q}$, $\hat{K} = \mathbb{Q}_7$ and $\hat{L} = \hat{K}[x]/(x^3 - 2)$. The extension \hat{L}/\hat{K} is Galois because $\hat{K} = \mathbb{Q}_7$ contains ζ_3 (we can lift the root 2 of $x^2 + x + 1 \in \mathbb{F}_7[x]$ to a root of $x^2 + x + 1 \in \mathbb{Q}_7[x]$ via Hensel's lemma), and this implies that $x^3 - 2$ splits completely in $L_w = \mathbb{Q}_7(\sqrt[3]{2})$. But $L = K[x]/(x^3 - 2)$ is not a Galois extension of K because it contains only one root of $x^3 - 2$. However, we can replace K with $\mathbb{Q}(\zeta_3)$ without changing \hat{K} (take the completion of K with respect to the absolute value induced by a prime above 7) or \hat{L} , but now $L = K[x]/(x^3 - 2)$ is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing the local fields extension \hat{L}/\hat{K} in a way that ensures that \hat{L}/\hat{K} and L/K have the same automorphism group. Indeed, this is always possible.

Corollary 11.19. For every finite Galois extension \hat{L}/\hat{K} of local fields there is a corresponding Galois extension of global fields L/K and an absolute value | | on L such that \hat{L} is the completion of L with respect to | |, \hat{K} is the completion of K with respect to the restriction of | | to K, and $\operatorname{Gal}(\hat{L}/\hat{K}) \simeq \operatorname{Gal}(L/K)$.

Proof. The archimedean case is already covered by Theorem 11.17 (take $K = \mathbb{Q}$), so we assume \hat{L} is nonarchimedean and note that we may take $| \ |$ to be the absolute value on both \hat{K} and on \hat{L} (by Theorem 10.7). The field \hat{K} is an extension of either \mathbb{Q}_p or $\mathbb{F}_q((t))$, and by applying Theorem 11.17 to this extension we may assume \hat{K} is the completion of a global field K with respect to the restriction of $| \ |$. As in the proof of the theorem, let $g \in K[x]$ be a monic separable polynomial irreducible in $\hat{K}[x]$ such that $\hat{L} = \hat{K}[x]/(g)$ and define L := K[x]/(g) so that \hat{L} is the compositum of \hat{K} and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains all the roots of g (which are distinct because g is separable). The field \hat{L} also contains these roots (since \hat{L}/\hat{K} is Galois) and \hat{L} contains K, so \hat{L} contains a subextension of K isomorphic to M (by the universal property of a splitting field), which we now identify with M; note that \hat{L} is also the completion of M with respect to the restriction of $| \cdot |$ to M.

We have a group homomorphism $\varphi \colon \operatorname{Gal}(\hat{L}/\hat{K}) \to \operatorname{Gal}(M/K)$ induced by restriction, and φ is injective (each $\sigma \in \operatorname{Gal}(\hat{L}/\hat{K})$ is determined by its action on any root of g in M). If we now replace K by the fixed field of the image of φ and replace L with M, the completion of K with respect to the restriction of $| \cdot |$ is still equal to \hat{K} , and similarly for L and \hat{L} , and now $\operatorname{Gal}(L/K) = \operatorname{Gal}(\hat{L}/\hat{K})$ as desired. \Box

11.4 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field K with a finite separable extension L/K, and B is the integral closure of A in L, which is also a Dedekind domain. Recall from Theorem 9.2 that if \mathfrak{p} is a nonzero prime of A, each prime $\mathfrak{q}|\mathfrak{p}$ gives a valuation $v_{\mathfrak{q}}$ of L that extends the valuation $v_{\mathfrak{p}}$ of K with index $e_{\mathfrak{q}}$, meaning that $v_{\mathfrak{q}}|_K = e_{\mathfrak{q}}v_{\mathfrak{p}}$. Moreover, every valuation of L that extends $v_{\mathfrak{p}}$ arises in this way. We now want to look at what happens when we complete K with respect to the absolute value $| \mid_{\mathfrak{p}}$ induced by $v_{\mathfrak{p}}$, and similarly complete L with respect to $| \mid_{\mathfrak{q}}$ for some $\mathfrak{q}|\mathfrak{p}$. This includes the case where L/K is an extension of global fields, in which case we get a corresponding extension $L_{\mathfrak{q}}/K_{\mathfrak{p}}$ of local fields for each $\mathfrak{q}|\mathfrak{p}$, but note that $L_{\mathfrak{q}}/K_{\mathfrak{p}}$ may have strictly smaller degree than L/K because if we write $L \simeq K[x]/(f)$, the irreducible polynomial $f \in K[x]$ need not be irreducible over $K_{\mathfrak{p}}$. Indeed, this will necessarily be the case if there is more than one prime \mathfrak{q} lying above \mathfrak{p} ; there is a one-to-one correspondence between factors of f in $K_{\mathfrak{p}}[x]$ and primes $\mathfrak{q}|\mathfrak{p}$. If L/K is Galois, so is $L_{\mathfrak{q}}/K_{\mathfrak{p}}$ and each $\operatorname{Gal}(L_{\mathfrak{q}}/K_{\mathfrak{p}})$ is isomorphic to the decomposition group $D_{\mathfrak{q}}$ (which perhaps helps to explain the terminology).

The following theorem gives a complete description of the situation.

Theorem 11.20. Assume AKLB, let \mathfrak{p} be a prime of A, and let $\mathfrak{p}B = \prod_{\mathfrak{q}|\mathfrak{p}} \mathfrak{q}^{e_{\mathfrak{q}}}$ be the factorization of $\mathfrak{p}B$ in B. Let $K_{\mathfrak{p}}$ denote the completion of K with respect to $||_{\mathfrak{p}}$, and let $\hat{\mathfrak{p}}$ denote the maximal ideal of its valuation ring. For each $\mathfrak{q}|\mathfrak{p}$, let $L_{\mathfrak{q}}$ denote the completion of L with respect to $||_{\mathfrak{q}}$, and let $\hat{\mathfrak{q}}$ denote the maximal ideal of its valuation ring. The following hold:

- (1) Each $L_{\mathfrak{q}}$ is a finite separable extension of $K_{\mathfrak{p}}$;
- (2) Each $\hat{\mathfrak{q}}$ is the unique prime of $L_{\mathfrak{q}}$ lying over $\hat{\mathfrak{p}}$.

- (3) Each $\hat{\mathfrak{q}}$ has ramification index $e_{\hat{\mathfrak{q}}} = e_{\mathfrak{q}}$ and residue field degree $f_{\hat{q}} = f_{\mathfrak{q}}$.
- (4) $[L_{\mathfrak{q}}:K_{\mathfrak{p}}]=e_{\mathfrak{q}}f_{\mathfrak{q}};$
- (5) The map $L \otimes_K K_{\mathfrak{p}} \to \prod_{\mathfrak{q}|\mathfrak{p}} L_{\mathfrak{q}}$ defined by $\ell \otimes x \mapsto (\ell x, \ldots, \ell x)$ is an isomorphism of finite étale $K_{\mathfrak{p}}$ -algebras.
- (6) If L/K is Galois then each $L_{\mathfrak{q}}/K_{\mathfrak{p}}$ is Galois and we have isomorphisms of decomposition groups $D_{\mathfrak{q}} \simeq D_{\hat{\mathfrak{q}}} = \operatorname{Gal}(L_{\mathfrak{q}}/K_{\mathfrak{p}})$ and inertia groups $I_{\mathfrak{q}} \simeq I_{\hat{\mathfrak{q}}}$.

Proof. We first note that the $K_{\mathfrak{p}}$ and the $L_{\mathfrak{q}}$ are all fraction fields of complete DVRs; this follows from Proposition 8.11 (note: we are not assuming they are local fields, in particular, their residue fields need not be finite).

(1) For each $\mathfrak{q}|\mathfrak{p}$ the embedding $K \hookrightarrow L$ induces an embedding $K_{\mathfrak{p}} \hookrightarrow L_{\mathfrak{q}}$ via the map $[(a_n)] \mapsto [(a_n)]$ on equivalence classes of Cauchy sequences; a sequence (a_n) that is Cauchy in K with respect to $| |_{\mathfrak{p}}$, is also Cauchy in L with respect to $| |_{\mathfrak{q}}$ because $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$. We thus view $K_{\mathfrak{p}}$ as a subfield of $L_{\mathfrak{q}}$, which also contains L. There is thus a K-algebra homomorphism $\phi_{\mathfrak{q}} \colon L \otimes_K K_{\mathfrak{p}} \to L_{\mathfrak{q}}$ defined by $\ell \otimes x \mapsto \ell x$, which we may view as a linear map of $K_{\mathfrak{p}}$ vector spaces. We claim that $\phi_{\mathfrak{q}}$ is surjective.

If $\alpha_1, \ldots, \alpha_m$ is any basis for $L_{\mathfrak{q}}$ then its determinant with respect to \mathcal{B} , i.e., the $m \times m$ matrix whose *j*th row contains the coefficients of α_j when written as a linear combination of elements of \mathcal{B} , must be nonzero. The determinant is a polynomial in the entries of this matrix, hence a continuous function with respect to the topology on $L_{\mathfrak{q}}$ induced by the absolute value $|\cdot|_{\mathfrak{q}}$. It follows that if we replace $\alpha_1, \ldots, \alpha_m$ with ℓ_1, \ldots, ℓ_m chosen so that $|\alpha_j - \ell_j|_{\mathfrak{q}}$ is sufficiently small, the matrix of ℓ_1, \ldots, ℓ_m with respect to \mathcal{B} must also be nonzero, and therefore ℓ_1, \ldots, ℓ_m is also a basis for $L_{\mathfrak{q}}$. We can thus choose a basis $\ell_1, \ldots, \ell_m \in L$, since L is dense in its completion $L_{\mathfrak{q}}$. But then $\{\ell_j\} = \{\phi_{\mathfrak{q}}(\ell_j \otimes 1)\} \subseteq \operatorname{im} \phi_{\mathfrak{q}}$ spans $L_{\mathfrak{q}}$, so $\phi_{\mathfrak{q}}$ is surjective as claimed.

The $K_{\mathfrak{p}}$ -algebra $L \otimes_K K_{\mathfrak{p}}$ is the base change of a finite étale algebra, hence finite étale, by Proposition 4.33. It follows that $L_{\mathfrak{q}}$ is a finite separable extension of $K_{\mathfrak{p}}$: it certainly has finite dimension as a $K_{\mathfrak{p}}$ -vector space, since $\phi_{\mathfrak{q}}$ is surjective, and it is separable because every $\alpha \in L_{\mathfrak{q}}$ is the image $\phi_{\mathfrak{q}}(\beta)$ of an element $\beta \in L \otimes_K K_{\mathfrak{p}}$ that is a root of a separable (but not necessarily irreducible) polynomial $f \in K_{\mathfrak{p}}[x]$, as explained after Definition 4.28; we then have $0 = \phi_{\mathfrak{q}}(0) = \phi_{\mathfrak{q}}(f(\beta)) = f(\alpha)$, so α is a root of f, hence separable.

(2) The valuation rings of $K_{\mathfrak{p}}$ and $L_{\mathfrak{q}}$ are complete DVRs, so this follows immediately from Theorem 10.1.

(3) The valuation $v_{\hat{q}}$ extends $v_{\mathfrak{q}}$ with index 1, which in turn extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$. The valuation $v_{\hat{\mathfrak{p}}}$ extends $v_{\mathfrak{p}}$ with index 1, and it follows that $v_{\hat{q}}$ extends $v_{\hat{p}}$ with index $e_{\mathfrak{q}}$ and therefore $e_{\hat{\mathfrak{q}}} = e_{\mathfrak{q}}$. The residue field of $\hat{\mathfrak{p}}$ is the same as that of \mathfrak{p} : for any Cauchy sequence (a_n) over K the a_n will eventually all have the same image in the residue field at \mathfrak{p} (since $v_{\mathfrak{p}}(a_n - a_m) > 0$ for all sufficiently large m and n). Similar comments apply to each $\hat{\mathfrak{q}}$ and \mathfrak{q} , and it follows that $f_{\hat{\mathfrak{q}}} = f_{\mathfrak{q}}$.

(4) It follows from (2) that $[L_{\mathfrak{q}}: K_{\mathfrak{p}}] = e_{\hat{\mathfrak{q}}} f_{\hat{\mathfrak{q}}}$, since $\hat{\mathfrak{q}}$ is the only prime above $\hat{\mathfrak{p}}$, and (3) then implies $[L_{\mathfrak{q}}: K_{\mathfrak{p}}] = e_{\mathfrak{q}} f_{\mathfrak{q}}$.

(5) Let $\phi = \prod_{\mathfrak{q}|\mathfrak{p}} \phi_{\mathfrak{q}}$, where $\phi_{\mathfrak{q}}$ are the surjective $K_{\mathfrak{p}}$ -algebra homomorphisms defined in the proof of (1). Then $\phi: L \otimes_K K_{\mathfrak{p}} \to \prod_{\mathfrak{q}|\mathfrak{p}} L_{\mathfrak{q}}$ is a $K_{\mathfrak{p}}$ -algebra homomorphism. Applying (4) and the fact that base change preserves dimension (see Proposition 4.33):

$$\dim_{K_{\mathfrak{p}}} (L \otimes_{K} K_{\mathfrak{p}}) = \dim_{K} L = [L:K] = \sum_{\mathfrak{q}|\mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}} = \sum_{\mathfrak{q}|\mathfrak{p}} [L_{\mathfrak{q}}:K_{\mathfrak{p}}] = \dim_{K_{\mathfrak{p}}} \left(\prod_{\mathfrak{q}|\mathfrak{p}} L_{\mathfrak{q}}\right).$$

The domain and range of ϕ thus have the same dimension, and ϕ is surjective (since the ϕ_q are), so it is an isomorphism.

(6) We now assume L/K is Galois. Each $\sigma \in D_{\mathfrak{q}}$ acts on L and respects the valuation $v_{\mathfrak{q}}$, since it fixes \mathfrak{q} (if $x \in \mathfrak{q}^n$ then $\sigma(x) \in \sigma(\mathfrak{q}^n) = \sigma(\mathfrak{q})^n = \mathfrak{q}^n$). It follows that if (x_n) is a Cauchy sequence in L, then so is $(\sigma(x_n))$, thus σ is an automorphism of $L_{\mathfrak{q}}$, and it fixes $K_{\mathfrak{p}}$. We thus have a group homomorphism $\varphi \colon D_{\mathfrak{q}} \to \operatorname{Aut}_{K_{\mathfrak{p}}}(L_{\mathfrak{q}})$.

If $\sigma \in D_{\mathfrak{q}}$ acts trivially on $L_{\mathfrak{q}}$ then it acts trivially on $L \subseteq L_{\mathfrak{q}}$, so ker φ is trivial. Also,

$$e_{\mathfrak{q}}f_{\mathfrak{q}} = |D_{\mathfrak{q}}| \le #\operatorname{Aut}_{K_{\mathfrak{p}}}(L_{\mathfrak{q}}) \le [L_{\mathfrak{q}}:K_{\mathfrak{p}}] = e_{\mathfrak{q}}f_{\mathfrak{q}},$$

by Theorem 11.20, so $\#\operatorname{Aut}_{K_{\mathfrak{p}}}(L_{\mathfrak{q}}) = [L_{\mathfrak{q}} : K_{\mathfrak{p}}]$ and $L_{\mathfrak{q}}/K_{\mathfrak{p}}$ is Galois, and this also shows that φ is surjective and therefore an isomorphism. There is only one prime \hat{q} of $L_{\mathfrak{q}}$, and it is necessarily fixed by every $\sigma \in \operatorname{Gal}(L_{\mathfrak{q}}/K_{\mathfrak{p}})$, so $\operatorname{Gal}(L_{\mathfrak{q}}/K_{\mathfrak{p}}) \simeq D_{\hat{\mathfrak{q}}}$. The inertia groups $I_{\mathfrak{q}}$ and $I_{\hat{\mathfrak{q}}}$ both have order $e_{\mathfrak{q}} = e_{\hat{\mathfrak{q}}}$, and φ restricts to a homomorphism $I_{\mathfrak{q}} \to I_{\hat{\mathfrak{q}}}$, so the inertia groups are also isomorphic.

Corollary 11.21. Assume AKLB and let \mathfrak{p} be a prime of A. For every $\alpha \in L$ we have

$$\mathcal{N}_{L/K}(\alpha) = \prod_{\mathfrak{q}|\mathfrak{p}} \mathcal{N}_{L_{\mathfrak{q}}/K_{\mathfrak{p}}}(\alpha) \qquad and \qquad \mathcal{T}_{L/K}(\alpha) = \sum_{\mathfrak{q}|\mathfrak{p}} \mathcal{T}_{L_{\mathfrak{q}}/K_{\mathfrak{q}}}(\alpha).$$

where we view α as an element of $L_{\mathfrak{q}}$ via the canonical embedding $L \hookrightarrow L_{\mathfrak{q}}$.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps $L \xrightarrow{\times \alpha} L$ that are unchanged upon tensoring with $K_{\mathfrak{p}}$; the corollary then follows from the isomorphism in part (5) of Theorem 11.20, which commutes with the norm and trace. \Box

Remark 11.22. Theorem 11.20 can be stated more generally in terms of (equivalence classes of) absolute values (or *places*). Rather than working with a prime \mathfrak{p} of K and primes \mathfrak{q} of L above \mathfrak{p} , one works with an absolute value $| |_v$ of K (for example, $| |_{\mathfrak{p}}$) and inequivalent absolute values $| |_w$ of L that extend $| |_v$. Places will be discussed further in the next lecture.

Corollary 11.23. Assume AKLB with A a DVR with maximal ideal \mathfrak{p} . Let $\mathfrak{p}B = \prod \mathfrak{q}^{e_{\mathfrak{q}}}$ be the factorization of $\mathfrak{p}B$ in B. Let \hat{A} denote the completion of A, and for each $\mathfrak{q}|\mathfrak{p}$, let $\hat{B}_{\mathfrak{q}}$ denote the completion of $B_{\mathfrak{q}}$. Then $B \otimes_A \hat{A} \simeq \prod_{\mathfrak{q}|\mathfrak{p}} \hat{B}_{\mathfrak{q}}$.

Proof. Since A is a DVR (and therefore a torsion-free PID), the ring extension B/A is a free A module of rank n := [L : K], and therefore $B \otimes_A \hat{A}$ is a free \hat{A} -module of rank n. And $\prod \hat{B}_{\mathfrak{q}}$ is a free \hat{A} -module of rank $\sum_{\mathfrak{q}|\mathfrak{p}} e_{\mathfrak{q}}f_{\mathfrak{q}} = n$. These two \hat{A} -modules lie in isomorphic $K_{\mathfrak{p}}$ -vector spaces, $L \otimes_K K_{\mathfrak{p}} \simeq \prod L_{\mathfrak{q}}$, by part (5) of Theorem 11.20. To show that they are isomorphic it suffices to check that they are isomorphic after reducing modulo $\hat{\mathfrak{p}}$, the maximal ideal of \hat{A} .

For the LHS, note that $\hat{A}/\hat{\mathfrak{p}} \simeq A/\mathfrak{p}$, so

$$B \otimes_A \hat{A}/\hat{\mathfrak{p}} \simeq B \otimes_A A/\mathfrak{p} \simeq B/\mathfrak{p}B.$$

On the RHS we have

$$\prod_{\mathfrak{q}|\mathfrak{p}} \hat{B}_{\mathfrak{q}}/\hat{\mathfrak{p}}\hat{B}_{\mathfrak{q}} \simeq \prod_{\mathfrak{q}|\mathfrak{p}} \hat{B}_{\mathfrak{q}}/\mathfrak{p}\hat{B}_{\mathfrak{q}} \simeq \prod_{\mathfrak{q}|\mathfrak{p}} B_{\mathfrak{q}}/\mathfrak{p}B_{\mathfrak{q}} = \prod_{\mathfrak{q}|\mathfrak{p}} B_{\mathfrak{q}}/\mathfrak{q}^{e_{\mathfrak{q}}}B_{\mathfrak{q}}$$

which is isomorphic to $B/\mathfrak{p}B$ on the LHS because $\mathfrak{p}B = \prod_{\mathfrak{q}|\mathfrak{p}} \mathfrak{q}^{e_{\mathfrak{q}}}$.

18.785 Fall 2016, Lecture #11, Page 8

References

- Marc Krasner, Théorie non abélienne des corps de classes pour les extensions finies et séparables des corps valués complets: principes fondamentaux; espaces de polynomes et transformation T; lois d'unicité, d'ordination et d'existence, C. R. Acad. Sci. Paris 222 (1946), 626–628.
- [2] Alexander Ostrowski, Über sogenannte perfekte Körper, J. Reine Angew. Math. 147 (1917), 191–204