
18.785 Number Theory Fall 2015

Problem Set #8 Due: 11/16/2015

Description

These problems are related to the material covered in Lectures 14-15. Your solutions are
to be written up in latex (you can use the latex source for the problem set as a template)
and submitted as a pdf-file with a filename of the form SurnamePset8.pdf via e-mail
to drew@math.mit.edu by 5pm on the date due. Collaboration is permitted/encour-
aged, but you must identify your collaborators, and any references you consulted. If
there are none, write “Sources consulted: none” at the top of your problem set. The
first person to spot each non-trivial typo/error in any of the problem sets or lecture notes
will receive 1-5 points of extra credit.

Note: Problem 1 assumes some background in complex analysis beyond the quick review
given in the notes.

Instructions: First do the warm up problems, then pick two of problems 1-4 to solve
and write up your answers in latex. Finally, complete the survey problem 5.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) In class we gave an elementary proof that ϑ(x) = O(x). Give a similarly elementary
proof that x = O(ϑ(x)) (both bounds were proved by Chebyshev before the PNT).

(b) Prove the Möbius inversion formula, which states that if f and g are functions
Z≥1 → C that satisfy g(n) =

∑
d|n f(d) then f(n) =

∑
d|n µ(d)g(n/d), where

µ(n) := (−1)#{p|n} if n is squarefree and µ(n) = 0 otherwise.

Problem 1. The explicit formula (50 points)

Let Z(s) := π−s/2Γ( s2)ζ(s) denote the completed zeta function; we proved in class that
it has the integral representation

Z(s) =

∫ ∞
1

∞∑
n=1

e−πn
2x(xs/2 + x(1−s)/2)

dx

x
− 1

s
− 1

1− s
,

and extends to a meromorphic function on C with functional equation Z(s) = Z(1− s).
Recall Hadamard’s Factorization Theorem: if f(s) is an entire function and n is an

integer for which there exists a positive c < n+ 1 such that |f(s)| = O
(
exp(|s|c)) then

f(s) = smeg(s)
∏
ρ

(
1− s

ρ

)
En

(
s

ρ

)
, (1)

where m = ord0(f), g ∈ C[s] has degree at most n, the product ranges overs zeros ρ 6= 0

of f(s) (with multiplicity), and En(z) = exp(
∑n

k=1
zk

k ).

(a) Prove that we can apply (1) to f(s) := s(s− 1)Z(s) with n = 1 and m = 0.



(b) Prove that we can apply (1) to f(s) := Γ(s)−1 with n = 1 and m = 1.

(c) Prove that

(s− 1)ζ(s) = ea+bs
∏
ρ

(
1− s

ρ

)
e
s
ρ

∞∏
n=1

(
1 +

s

2n

)
e−

s
2n

for some a, b ∈ C, where ρ ranges over the zeros of ζ(s) in the critical strip.

(d) Using (c) and the Euler product for ζ(s), show that b = ζ′(0)
ζ(0) − 1 and

∑
p

∑
m≥1

p−ms log p =
s

s− 1
− ζ ′(0)

ζ(0)
−
∑
ρ

(
1

s− ρ
+

1

ρ

)
−
∑
n≥1

(
1

s+ 2n
− 1

2n

)
on Re(s) > 1.

We now recall the identity

1

2πi

∫ σ+i∞

σ−i∞

xs

s
ds =

{
1 if x > 1,

0 if 0 < x < 1,

valid for any x, σ > 0, and define the Perron integral transform

f 7→ lim
t→∞

1

2πi

∫ σ+it

σ−it
f(s) · x

s

s
ds.

We also define an alternative version of Chebyshev’s function

ψ(x) :=
∑
pn≤x

log p,

where the sum is over all prime powers pn ≤ x (but note that we take log p not log pn).

(e) Fix x > 1 not a prime power. By applying the Perron integral transform to both
sides of the equation in (d), and assuming that the RHS can be computed by applying
Cauchy’s residue formula term by term to the sums (and that the Perron integral
transform converges in each case), deduce the Explicit Formula

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
+
∑
n

x−2n

2n
.

(f) Fix c ∈ [1/2, 1) and suppose that ζ(s) has no zeros in the strip c < Re(s) < 1.
Assume that the number of zeros with imaginary part at most T is bounded by
O(T log T ). Derive the following bounds: ψ(x) = x+O(xc+ε), ϑ(x) = x+O(xc+ε),
and π(x) = Li(x) +O(xc+ε), for any ε > 0 (in fact one replace ε with o(1)).

Remark. The explicit formula you obtained in (e) is a slight variation of the one given
by Riemann (who also glossed over the somewhat delicate convergence issues you were
told to ignore – to make this rigorous you actually need to specify the order in which
the sum over ρ is computed, it does not converge absolutely). It is worth noting that
even with the explicit formula in hand, Riemann was unable to prove the Prime Number
Theorem because he could not (and we still cannot) prove that one can take c < 1 in (f).



Problem 2. The zeta function of Fq(t) (50 points)

Recall that for a number field K, the Dedekind zeta function ζK(s) is defined by

ζK :=
∑
I

N(I)−s,

where I ranges over nonzero ideals of OK and N(I) is the absolute norm, the cardi-
nality of the residue field OK/p when I is a prime ideal p. The Riemann zeta function
corresponds to the case K = Q.

We now extend this definition to all global fields K by defining the absolute norm
for prime ideals p via N(p) = #OK/p and extending multiplicatively. In this problem
you will investigate the zeta function ζK of the rational function field K := Fq(t) with
ring of integers OK = Fq[t].

(a) Show that every OK-ideal has the form I = (f), with f ∈ Fq[x] monic, and then
N(I) = #(OK/fOK) = qdeg f . Then prove that ζK = 1

1−q1−s for Re(s) > 1.

(b) Prove that ζK(s) has the Euler product

ζK(s) =
∏
p

(1−N(p)−s)−1,

valid for Re(s) > 1.

(c) Prove that ζK(s) extends to a meromorphic function on C with a simple pole at
s = 1 and no zeros. Give the residue of the pole at s = 1.

(d) Define a completed zeta function Z(s) = G(s)ζK(s), where G(s) is some suitably
chosen meromorphic function, and prove that your completed zeta function satisfies
the functional equation

ZK(s) = ZK(1− s).

(e) Let ad denote the number of primes of OK with residue field degree d, equivalently,
the number of irreducible monic polynomials in Fq[x] of degree d. Using (b) and (c),
prove that ∑

d|n

dad = qn.

Then apply Möbius inversion to obtain

an =
1

n

∑
d|n

µ(d)qn/d.

(f) Prove the Prime Number Theorem for Fq[t], which states that

an =
qn

n
+O

(
1

n
qn/2

)
.

Remark. The error term in (f) is comparable to the error term in the PNT under the
Riemann hypothesis (replace qn with x); note that the analog of the Riemann hypothesis
for ζK(s) is (vacuously) true, by (c).



(g) Let S(n) be the set of monic polynomials of degree n in Fq[t], and let I(n) be the
subset of polynomials in S(n) that are irreducible. Show that #I(n)/#S(n) ∼ 1

n .
Now let R(n) be the subset of polynomials in S(n) that have no roots in Fq. Give
an asymptotic estimate for #R(n)/#S(n).

(h) Let Q(n) denote the subset of S(n) consisting of squarefree polynomials. Prove that
limn→∞#Q(n)/#S(n) = 1/ζK(2).

(i) For nonzero f ∈ OK define Φ via Φ(f) := #(OK/fOK)×. Prove the following

1. Φ(f) = N(f)
∏
p|f (1−N(p)−1), where p ranges over the irreducible factors of f .

2. For all f, g ∈ OK with (f, g) = 1 we have gΦ(f) ≡ 1 mod f .

Problem 3. Bernoulli numbers (50 points)

For integers n ≥ 0, the Bernoulli polynomials Bn(x) ∈ Q[x] are defined as the coefficients
of the exponential generating function

E(t, x) :=
tetx

et − 1
=
∑
n≥0

Bn(x)

n!
tn.

The Bernoulli numbers Bn ∈ Q are defined by Bn = Bn(0).

(a) Prove that B0(x) = 1, B′n(x) = nBn−1(x), and Bn(1) = Bn(0) for n 6= 1, and that
these properties uniquely determine the Bernoulli polynomials.

(b) Prove that Bn(x+ 1)−Bn(x) = nxn−1 and

Bn(x+ y) =

n∑
k=0

(
n

k

)
Bk(x)yn−k.

Use this to show that Bk can alternatively be defined by the recurrence B0 = 1 and

Bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk

for all n > 0, and show that Bn = 0 for all odd n > 1.

(c) Recall the hyperbolic cotangent function coth z := ez+e−z

ez−e−z . Prove that

z coth z =
∑
n≥0

B2n
(2z)2n

(2n)!
.

(d) Show that cot z = i coth iz and prove (as Euler did)

z cot z = 1− 2
∑
k≥1

z2

k2π2 − z2
.



(e) Use (c) and (d) to prove that for all n ≥ 1 we have

ζ(2n) = (−1)n−1 (2π)2nB2n

2 · (2n)!
,

and then use the functional equation to prove that for all n ≥ 1 we have

ζ(−n) = −Bn+1

n+ 1
.

(f) Prove (rigorously!) that for any integer n > 1 the asymptotic density of integers
that are n-power free (not divisible by pn for any prime p) is 1/ζ(n) and compute
this density explicitly for n = 2, 4, 6.

(g) Prove that for all integer n,N > 1 we have

N−1∑
m=0

(m+ x)n−1 =
Bn(N + x)−Bn(x)

n
.

Use this to deduce Faulhaber’s formula

Pn(N) :=
N−1∑
m=1

mn =
1

n+ 1

n∑
k=0

(
n+ 1

k

)
BkN

n+1−k

for summing nth powers. Compute the polynomials Pn(N) explicitly for n = 2, 3, 4

Problem 4. Arithmetic functions and Dirichlet series (50 points)

Recall that an arithmetic function is a function a : Z≥1 → C; we say that a 6= 0 is
multiplicative if a(mn) = a(m)a(n) holds for all relatively prime m,n, and totally multi-
plicative if this holds for all m,n. Below are some examples; as usual, p denotes a prime,
pe denotes a (nontrivial) prime power, and d|n indicates that d is a positive divisor of n.

• 0(n) = 0, 1(n) = 1, id(n) := n, e(n) := 0n−1;

• τ(n) := #{d|n}, σ(n) :=
∑

d|n d;

• ω(n) := #{p|n}, Ω(n) := #{pe|n}, φ(n) := #(Z/nZ)×;

• λ(n) := (−1)Ω(n), µ(n) := (−1)ω(n) · 0Ω(n)−ω(n), µ2(n) := µ(n)2.

The set of all arithmetic functions forms a C-vector space that we denote A. Associated
to each arithmetic function is a Dirichlet series

∑
n≥1 cnn

−s defined by

Da(s) :=
∑
n≥1

a(n)n−s

The Dirichlet convolution a ∗ b of arithmetic functions a and b is defined by

(a ∗ b)(n) :=
∑
d|n

a(d)b(n/d),

We use f∗n to denote the n-fold convolution f ∗ · · · ∗ f .



(a) Prove that for any arithmetic functions we have Da∗b = DaDb and that endowing A
with a multiplication defined by Dirichlet convolution makes A a C-algebra that is
isomorphic to the C-algebra of Dirichlet series (with the usual multiplication).

(b) Show that A is a local ring with unit group A× = {f ∈ A : f(1) 6= 0} and maximal
ideal A0 = {f ∈ A : f(1) = 0}. Prove that the set of multiplicative functions M
forms a subgroup of A1 := {f ∈ A : f(1) = 1} ⊆ A×. Is this also true of the set of
totally multiplicative functions?

(c) Prove the following identities µ ∗ 1 = e, φ ∗ 1 = id, µ ∗ id = φ, 1 ∗ 1 = τ , id ∗1 = σ.
Use µ ∗ 1 = e to give a one-line proof of the Möbius inversion formula.

(d) Define the exponential map exp: A → A by

exp(f) :=

∞∑
n=0

f∗n

n!
= e+ f +

f ∗ f
2

+ · · ·

Prove that exp defines a group isomorphism from (A0,+) to (A1, ∗) with inverse

log(f) :=

∞∑
n=1

(−1)n−1(f − e)∗n

n
,

(e) Define κ(n) to be 1/k if n = pk is a prime power and 0 otherwise. Prove that
expκ = 1, and deduce that exp(−κ) = µ and exp(2κ) = τ .

(f) Prove that each f ∈ A1 has a unique square-root g ∈ A1 for which g∗2 = f that we
denote f∗1/2. Prove that 1∗1/2 = exp(κ/2) and compute exp(κ/2)(n) for n up to 10.

Problem 5. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/3 Riemann zeta function, PNT I

11/5 PNT II, the functional equation

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.


