
18.785 Number Theory Fall 2015

Problem Set #2 Due: 09/28/2015

Description

These problems are related to the material covered in Lectures 3-5. Your solutions are
to be written up in latex (you can use the latex source for the problem set as a template)
and submitted as a pdf-file via e-mail to drew@math.mit.edu by 5pm on the due date.
Collaboration is permitted, but you must identify your collaborators, and any references
you consulted. If there are none, write Sources consulted: none at the top of your
problem set. The first person to spot each non-trivial typo/error in any of the problem
sets or lecture notes will receive 1-5 points of extra credit.

Instructions: First do the warm up problems, then pick any combination of problems
1–5 that sums to 99 points and write up your answers in latex. Finally, be sure to
complete the survey problem 6.

Problem 0.

These are warm up problems that do not need to be written up or turned in. These
should not take long and are simply provided to help you check your understanding.

(a) Let A be a Dedekind domain and I a nonzero ideal of A. Prove that every ideal
in A/I is principal and use this to give an alternative proof of the fact that every
ideal in A can be generated by at most two elements (Theorem 3.32).

(b) Let k be a field. Prove that an irreducible polynomial f ∈ k[x] is inseparable if
and only if it is of the form f(x) = g(xp) for some g ∈ k[x] with p = char(k) 6= 0.

(c) Let B be an A-algebra that is free of rank n as an A-module. Prove NB/A(a) = an

and TB/A(a) = na for all a ∈ A.

(d) Let K = Q(ζ5) be the number field generated by a primitive 5th root of unity ζ5.
Show that K ⊗Q R is isomorphic to R4 as an R-vector space but as an R-algebra
it is isomorphic to C2 6' R4.

Problem 1. Characterizing Dedekind domains (33 points)

Recall that we defined a Dedekind domain to be an integrally closed noetherian domain
of dimension one, equivalently, a noetherian domain whose localization at every nonzero
prime ideal is a DVR. We then proved that (1) every nonzero ideal of A is invertible, (2)
every nonzero ideal I 6= A can be uniquely factored into prime ideals, and (3) for every
nonzero ideal I of A and nonzero a ∈ I we have I = (a, b) for some b ∈ I.

In this problem you will show that (1), (2), (3) each give another definition of
Dedekind domains.

(a) Let A be a local domain whose maximal ideal is nonzero. Prove that if every
nonzero ideal of A is invertible then A is a DVR (and therefore a Dedekind domain).

(b) Prove that a domain whose nonzero ideals are all invertible is a Dedekind domain.



(c) Prove that a domain whose nonzero ideals I 6= A can be factored into prime ideals
is a Dedekind domain.

(d) Let A be a domain such that for every nonzero ideal I and every nonzero a ∈ I
there is some b ∈ I for which I = (a, b). Prove that A is a Dedekind domain.

(e) Let A be a domain in which “to contain is to divide” holds, that is, a prime ideal p
contains an ideal I if and only if I = pJ for some ideal J . Must A be a Dedekind
domain? If not, what additional hypotheses on A are necessary?

Problem 2. Factoring primes in quadratic fields (33 points)

This is a follow-up to Problem 3 on Problem Set 1. Let p, q ∈ Z denote primes.

(a) Let K be a quadratic extension of Q with ring of integers OK , and let

(q) = qe11 · · · q
en
n

be the unique factorization of the principal ideal (q) in OK . Show that

[OK : qOK ] = q2 =
n∑
i=1

ei[OK : qi],

and conclude that there are three possibilities: (q) is prime, (q) = q1q2, or (q) = q2
1.

(b) For K := Q(
√
p) determine the unique factorization of (q) in OK explicitly; that

is, determine which of the three possibilities admitted by (a) occurs and when
applicable, write qi in the form (q, αi) for some explicitly described α ∈ OK . Be
sure to address the cases q = 2 and q = p which may require special treatment.

(c) Do the same for K := Q(
√
−p).

Problem 3. Weak approximation (33 points)

Let k be a field and for n ∈ Z≥1 let Sn and Wn denote the following statements:

Sn : Given inequivalent nontrivial absolute values | · |1, . . . , | · |n on k, there is an x ∈ k×
for which |x|1 > 1 and |x|i < 1 for 1 < i ≤ n.

Wn : Given inequivalent nontrivial absolute values | · |1, . . . , | · |n on k, there is a sequence
(x1, x2, . . .) of elements xj ∈ k that converges to 1 with respect to | · |1 and to 0
with respect to | · |i for 1 < i ≤ n.

(a) Prove S2 (hint: consider the set {(log |x|1, log |x|2) : x ∈ k×} ⊆ R2).

(b) Prove that Sn implies Wn.

(c) For each n ≥ 2 prove that S2 and Sn imply Sn+1.

(d) Prove that Sn and Wn hold for all n.

(e) Prove the Weak Approximation Theorem:

Given inequivalent absolute values | · |1, . . . , | · |n on k, elements a1, . . . , an ∈ k, and
ε1, . . . , εn ∈ R>0 there exists x ∈ k such that |x− ai|i < εi for i = 1, . . . , n.



Problem 4. Norm and trace in inseparable extensions (33 points)

Let L be a finite extension of a fieldK. Let Ω be an algebraically closed field containingK
and let Σ = HomK(L,Ω). Recall that the degree [L :K] of the extension L/K can be
written as

[L :K] = [L :K]s[L :K]i,

where [L :K]s := #Σ and [L :K]i denote the separable and inseparable degrees of L/K.

(a) Prove that for all b ∈ L we have

NL/K(b) =

(∏
σ∈Σ

σ(b)

)[L:K]i

.

(b) Prove that for all b ∈ L we have

TL/K(b) = [L : K]i

(∑
σ∈Σ

σ(b)

)
.

(c) Prove that TL/K = 0 (as a linear map) if and only if L/K is inseparable.

Problem 5. Fermat’s last theorem (66 points)1

Recall that Fermat’s Last Theorem (FLT) states that

xn + yn = zn

has no integer solutions with xyz 6= 0 for n > 2. By removing common factors we may
assume gcd(x, y, z) = 1, and we may assume that n = p is a prime greater than 5, since
the cases n = 3 and n = 4 were proved by Euler and Fermat (respectively), and we
can easily reduce to the case where either n = p is prime or n = 4 (every solution with
n = ab also gives a solution with n = a and n = b).

So let p ≥ 5 be prime and suppose x, y, z are relatively prime integers for which

xp + yp = zp

with xyz 6= 0, and let ζp ∈ Q denote a primitive pth root of unity (so ζpp = 1 but ζp 6= 1).
In order to simplify matters, we will make two further assumptions

(1) xyz 6= 0 mod p;

(2) the ring Z[ζp] is a UFD.

You will prove below that under these assumptions, no such x, y, z can exist.
The first assumption is not necessary, your proof can be extended to remove this

assumption. This was the basis of Lamé’s “proof” of FLT in 1847, which relied on (2);
unfortunately (2) holds only for p ≤ 19. Kummer later generalized Lamé’s argument to
many cases where Z[ζp] is not a UFD; Kummer’s argument applies whenever the order
of ideal class group of the ring of integers of Q(ζp) is not divisible by p, which is expected
to hold for infinitely many p (the set of so-called regular primes is believed to be infinite
but this is not known).

For any z ∈ Q(ζp), let z̄ denote its complex conjugate. If S is a set, then a ≡ b mod S
means a− b ∈ S.

1This problem is adapted from [1, I, Ex.17-27]



(a) Show that ζip − ζ
j
p properly divides p in the ring Z[ζp] for any i 6= j.

(b) Show that if a non-unit α ∈ Z[ζp] divides x + yζip then it does not divide x + yζjp
for any j 6= i.

(c) Show that x+ yζip = uiα
p
i for some αi ∈ Z[ζp] and ui ∈ Z[ζp]

×.

(d) Prove that 1 + t + · · · + tp−1 is irreducible in Q[t]; conclude that {1, ζp, . . . , ζp−2
p }

is a basis for Z[ζp] as a Z-module.

(e) Show that in any commutative ring A we have αp + βp ≡ (α+ β)p mod pA for all
α, β ∈ A.

(f) Let α ∈ Z[ζp]. Show (1) αp ≡ a mod pZ[ζp] for some a ∈ Z, (2) αp ≡ ᾱp mod pZ[ζp],
(3) p 6∈ Z[ζp]

×, and (4) if u ∈ Z[ζp]
× then u/ū 6= −ζip for any i.

(g) Show that if α ∈ Q× is an algebraic integer whose Galois conjugates all lie in the
unit disk in C then α is a root of unity.

(h) Show that if u ∈ Z[ζp]
× then u/ū = ζip for some i.

(i) Show that if x+yζp ≡ uαp mod pZ[ζp] with u ∈ Z[ζp]
×, then for some 0 ≤ j ≤ p−1

we must have x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp].

(j) Show that x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp] only if j = 1.

(k) Show that if x+ yζp ≡ xζp + y mod pZ[ζp] then x ≡ y mod p.

(l) Assuming Z[ζp] is a UFD, show xp + yp = zp has no solutions with xyz 6= 0 mod p.

Problem 6. Survey (1 point)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

9/22 Norm and trace

9/24 Factoring primes

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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