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7 Orders in Dedekind domains, primes in Galois extensions

7.1 Orders in Dedekind domains

Let S/R be an extension of rings. The conductor c of R (in S) is the largest S-ideal that is
also an R-ideal, equivalently,

c := {r ∈ R : rS ⊆ R}.

This definition applies to any ring extension, but we are interested in the case where R is
a noetherian domain and S is the integral closure of R. Thus whenever we speak of the
conductor of a domain R, we always mean the conductor of R in its integral closure S. In
this situation the conductor is nonzero precisely when S is finite over R.

Lemma 7.1. Let R be a noetherian domain. The conductor of R in its integral closure S
is nonzero if and only if S is finitely generated as an R-module.

Proof. This is a special case of Lemma 3.3.

We now introduce the notion of an order (in a Dedekind domain).

Definition 7.2. An order O is a noetherian domain of dimension one whose conductor is
nonzero, equivalently, whose integral closure is finitely generated as an O-module.1

Note that the integral closure of an order is a Dedekind domain. As shown by Nagata
[1, p. 212], noetherian domains of dimension one with zero conductor do exist, but in the
cases of interest to us the requirement the conductor be nonzero is automatically satisifed.

Example 7.3. In the AKLB setting, where B is the integral closure of A in a finite
separable extension L of the fraction field K of A, if we write L = K(α) with α ∈ B, then
O = A[α] is an order with fraction field L. Its conductor is nonzero because B is finitely
generated over A (by Proposition 4.60), hence over A[α].

Remark 7.4. There is a more general notion of an order than the one we have given
here. Let A be a noetherian domain with fraction field K, and let L be a (not necessarily
commutative) K-algebra of finite dimension. An A-order in L is a subring O of L that is
also an A-lattice (finitely generated A-submodule of L that spans L as a K-vector space).
In the AKLB-setting, any order O with integral closure B is also an A-order in L, and if
we assume that A has dimension one, commutative A-orders are orders under our definition
above. But in general the K-algebra L and the order O need not be commutative. For
example, the endomorphism ring of an elliptic curve E/k (where k is any field) is isomorphic
to a Z-order O in a Q-algebra L of dimension 1, 2, or 4. The Z-order O is commutative in
the dimension 1 and 2 cases, where L is either Q or an imaginary quadratic field, but it is
non-commutative in the dimension 4 case, where L is a quaternion algebra.

As with Dedekind domains, by a prime p of an order O we mean a nonzero (hence
maximal) prime O-ideal, and if q is a prime of the integral closure B of O lying above p
(dividing pB) then we may write q|p to indicate this. As in the AKLB setup, we have q|p
if and only if q ∩ O = p (see Lemma 5.1).

1Not all authors require an order to have nonzero conductor (e.g. Neukirch [2, §I.12]), but most of the
interesting theorems about orders require this assumption.
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Lemma 7.5. Let O be an order with integral closure B and conductor c. A prime q of B
contains c if and only if the prime p = q ∩ O of O contains c. In particular, only finitely
many primes p of O contain c.

Proof. Let q be a prime of B. We have c ⊆ O, thus q contains c if and only if p = q ∩ O
contains c. The factorization of the ideal c in B includes only many prime ideals q, and
each such q lies above only one prime p = q ∩ O of O.

Lemma 7.6. Let O be an order with integral closure B and conductor c. Let p be a prime
of O that does not contain c. Then pB is a prime of B.

Proof. Fix s ∈ c−p. We claim that for any prime q|p we have Op = Bq. Certainly Op ⊆ Bq:
for any x = a/d ∈ Op with a ∈ O and d ∈ O−p we have a ∈ B and d 6∈ (B−q)∩O = B−q.
Conversely, for any b/t ∈ Bq with b ∈ B and t ∈ B − q, we have b/t = (sb)/(st) ∈ Op, since
sb ∈ O and st ∈ O − p (note s 6∈ p ⊆ q and t 6∈ q, so st 6∈ q ⊇ p), thus Bq ⊆ Op.

It follows that there is a unique prime q of B lying above p (since Bq 6= Bq′ if q 6= q′).
We thus have pB = qe for some e ≥ 1, and we claim that e = 1. Indeed, we must have
pOp = qBq (this is the unique maximal ideal of the local ring Op = Bq written in two
different ways), so qeBq = qBq and therefore e = 1.

Corollary 7.7. Let O be an order with integral closure B and conductor c. The restriction
of the map SpecB → SpecO defined by q 7→ q ∩ O to prime ideals that do not contain c is
a bijection with inverse p 7→ pB.

Theorem 7.8. Let O be an order with integral closure B and conductor c, and let p be a
prime of O. The following are equivalent:

(a) p does not contain c;

(b) O = {x ∈ B : xp ⊆ p};
(c) p is invertible;

(d) Op is a DVR;

(e) pOp is principal.

If any of these equivalent properties hold, then pB is a prime of B.

Proof. See Problem Set 4.

Recall that two ideals I and J in a ring A are said to be relatively prime if I + J = A;
we may also say that I is prime to J . It follows from the localization results we proved in
Lectures 2 and 3 that, at least when A is a noetherian domain, this is equivalent to requiring
that Ip + Jp = Ap for every prime ideal p of A. For prime ideals p that do not contain J ,
we have Jp = Ap, in which case this condition is trivially satisfied. On the other hand, if p
contains J , then Jp is contained in the unique maximal ideal pAp of the local ring Ap, and
we can have Ip + Jp = Ap only when Ip 6⊆ pAp, in which case Ip = Ap. This leads to the
following definition.

Definition 7.9. Let A be a noetherian domain and let J be and ideal of A. A fractional
ideal I of A is prime to J if IAp = Ap for all prime ideals p that contain J .
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Corollary 7.10. Let O be an order with integral closure B and conductor c, and let IcO
and IcB denote the sets of fractional ideals of O and B, respectively, that are prime to the
conductor c. The map q 7→ q∩O induces a group isomorphism from IcB to IcO. In particular,
every fractional ideal in IcO can be uniquely factored into prime ideals that do not contain c.

Remark 7.11. Orders in Dedekind domains also have a geometric interpretation. If O is an
order, the curve X = SpecO will have a singularity at each closed point P corresponding to
a maximal ideal of O that contains the conductor. Taking the integral closure B of O yields
a smooth curve Y = SpecB with the same function field as X and a morphism Y → X
that looks like a bijection above non-singular points (a dominant morphism of degree 1).
The curve Y is called the normalization of X.

7.2 Splitting primes in Galois extensions

We now return to our standard AKLB setup: A is a Dedekind domain with K as its fraction
field, L is a finite separable extension of K, and B is the integral closure of A in L (so B
is a Dedekind domain with fraction field L). We now add the additional hypothesis that
L/K is a normal extension, equivalently, L/K is Galois, and let G := Gal(L/K) denote the
Galois group. We will use the shorthand AKLBG to denote this setup. Recall that by a
prime of A (or K) we mean a nonzero prime ideal of A, and similarly for B (or L).

Theorem 7.12. Assume AKLBG. Then G acts on the ideal group IB of B via

σ(I) = {σ(x) : x ∈ I}.

This action commutes with the group operation in IB and permutes the primes of B.

Proof. Let σ ∈ G. We first show σ(B) = B: each b ∈ B is integral over A and therefore
the root of some monic polynomial f ∈ A[x] ⊂ K[x] whose coefficients are fixed by σ. We
have f(b) = 0, thus σ(f(b)) = f(σ(b)) = 0 and σ(b) ∈ L is integral over A and therefore
lies in B, the integral closure of A in L; this proves σ(B) ⊆ B. By the same argument,
σ−1(B) ⊆ B, so B ⊆ σ(B) and therefore σ(B) = B.

Now let I be an ideal of B. Then σ(I) ⊆ σ(B) = B. The set σ(I) is closed under
addition, since σ is a field automorphism, and if a ∈ I and b ∈ B then σ−1(b)a ∈ I, since
σ−1(b) ∈ B and I is a B-ideal, thus bσ(a) ∈ σ(I). It follows that σ(I) is an ideal of B, and
we note that σ(I) = (0) if and only if I = (0).

Each nonzero fractional ideal has the form xI for some x ∈ L× and nonzero ideal I. We
have σ(xI) = σ(x)σ(I), which is a nonzero fractional ideal of B, since σ(x) ∈ L× and σ(I)
is an ideal. Thus each σ ∈ G acts on the set IB. The identity automorphism clearly acts
trivially, and for any σ, τ ∈ G and I ∈ IB we have

(στ)(I) = {(στ)(x) : x ∈ I} = {σ(τ(x)) : x ∈ I} = {σ(y) : y ∈ τ(I)} = σ(τ(I)),

thus the group G acts on the set IB.
For any I, J ∈ IB and σ ∈ G, if x = a1b1 + · · · + anbn with the ai ∈ I and bi ∈ J ,

then σ(x) = σ(a1)σ(b1) + · · ·+ σ(an)σ(bn) and therefore σ(IJ) ⊆ σ(I)σ(J). Conversely, if
y = σ(a1)σ(b1)+· · ·+σ(an)σ(bn) then y = σ(a1b1+· · ·+anbn) ∈ σ(IJ) so σ(I)σ(J) ⊆ σ(IJ)
and σ(IJ) = σ(I)σ(J). The action of G thus commutes with the group operation in IB.

It follows that if I =
∏
i q
ei
i is the unique factorization of a fractional ideal I of B, then

σ(I) =
∏
i σ(qi)

ei is the unique factorization of σ(I). In particular, if q is a nonzero prime
ideal of B then the unique factorization of σ(q) is just σ(q), hence σ(q) is prime.
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Corollary 7.13. Assume AKLBG, and let p be a nonzero prime of A. Then G acts
transitively on the set {q|p} of primes q of B that lie above p.

Proof. Let σ ∈ G. For any prime q|p we have pB ⊆ q, thus σ(pB) ⊆ σ(q), so σ(q)|p, and it
follows from the theorem that G acts on the set {q|p}.

To show the action is transitive, let q and q′ be two primes lying above p, and suppose for
the sake of contradiction that σ(q) 6= q′ for all σ ∈ G. By the Chinese remainder theorem,
we may choose b ∈ q′ such that b ≡ 1 mod σ−1(q) for all σ ∈ G. Then

a = NL/K(b) =
∏
σ∈G

σ(b) ≡ 1 mod q,

so a 6∈ q, and a 6∈ A ∩ q = p. But a = NL/K(b) ∈ NL/K(q′) = pfq′ ⊆ p, a contradiction.

Corollary 7.14. Assume AKLBG and let p be a nonzero prime of A. The residue field
degree fq = [B/q : A/p] and ramification index eq = vq(pB) are the same for every q|p.

Proof. For each σ ∈ G we have σ(B) = B, so σ restricts to an isomorphism of B and for
each q|p induces an isomorphism

σ : B/q
∼−→ B/σ(q).

It follows that fq = fσ(q), and since G acts transitively on {q|p}, all the fq must be equal.
For each q|p we also have

eq = vq(pB) = vq(σ(pB)) = vq(σr|p(
∏
r|p

rer)) = vq(
∏
r|p

σ(r)er) = eσ−1(q),

and since G acts transitively on {q|p} all the eq must be equal.

The corollary implies that whenever L/K is Galois, we may unambiguously write ep
and fp instead of eq and fq. We also define gp = #{q|p}.

Corollary 7.15. Assume AKLBG and let n = [L : K]. For each nonzero prime p of A we
have n = epfpgp.

Example 7.16. Assume AKLBG. When n = [L : K] is prime there are just three
possibilities for the factorization of each prime p of A:

• ep = n and fp = gp = 1, in which case p is totally ramified;

• fp = n and ep = gp = 1, in which case p is inert;

• gp = n and ep = fp = 1, in which case p splits completely.

7.3 Decomposition and inertia groups

Definition 7.17. Assume AKLBG and let q be a nonzero prime of B. The decomposition
group (of q) is the stabilizer of q in G, denoted Dq = Dq(L/K).

Lemma 7.18. Assume AKLBG and let p be a nonzero prime of A. The decomposition
groups Dq for q|p are all conjugate and have order epfp and index gp in G.
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Proof. For any group action, points in the same orbit have conjugate stabilizers. The
stabilizers Gq = Dq are all conjugate because the primes q|p all lie in the same orbit (by
Corollary 7.13). By the orbit stabilizer theorem, [G : Dq] = #{q|p} = gp, and since
|G| = [L : K] = epfpgp, we have |Dq| = |G|/[G : Dq] = epfp.

Let us now fix a prime q of B lying above p = q∩A. For each σ ∈ G we have σ(B) = B,
and if σ ∈ Dq then we also have σ(q) = q and σ induces a field automorphism σ of the
residue field B/q. Since σ fixes p ⊆ A ⊆ K, the automorphism σ fixes the subfield A/p of
B/q. This gives us a map σ 7→ σ from Dq to AutA/p(B/q).

In order to lighten the notation, we may use κ(p) := A/p and κ(q) := B/q to denote
the residue fields and p and q, respectively.

Proposition 7.19. Assume AKLBG. Let q be a prime of B lying above p = A ∩ q. The
residue field κ(q) := B/q is a normal extension of κ(p) := A/p, and the map

πq : Dq → Autκ(p)(κ(q))

σ 7→ σ

defined above is a surjective group homomorphism.

Proof. The map πq clearly preserves the identity element, and for any σ, τ ∈ Dq we have
στ = σ τ because the action of Dq on B fixes q and commutes with quotienting by q.

To show surjectivity, let F be the separable closure of κ(p) in κ(q), so that restriction
to F induces an isomorphism from Autκ(p)(κ(q)) to Gal(F/κ(p)). Since F is a finite sep-
arable extension of κ(p), it is simple, generated by some α ∈ F×. Let us now pick a ∈ B
such that a ≡ α mod q and a ≡ 0 mod σ−1(q) for all σ ∈ G−Dq ; such an a exists by the
Chinese remainder theorem. Now define

g(x) :=
∏
σ∈G

(
x− σ(a)

)
∈ A[x],

and let g denote the image of g in κ(p)[x]. For each σ ∈ G − Dq the image of σ(a) in
B/q = κ(q) is 0, by construction, so 0 is a root of g with multiplicity m = #(G − Dq).
The remaining roots are σ(α) for σ ∈ Dq, which are all Galois conjugates of α. It follows
that g(x)/xm divides the minimal polynomial of α, but the minimal polynomial of α is
irreducible in κ(p)[x], so g(x)/xm is the minimal polynomial of α, and every conjugate of α
is of the form σ(α) for some σ ∈ Dq. Thus Dq surjects onto Gal(F/κ(p)) ' Autκ(p)(κ(q)),
so πq is surjective.

To show that κ(q) is a normal extension of κ(p) it suffices to show that each a ∈ κ(q)
is the root of a monic polynomial in κ(p)[x] that splits completely in κ(q)[x]. So fix a ∈ B,
define g ∈ A[x] and g ∈ κ(p)[x] as above. Then a is a root of the monic polynomial g, which
splits completely in κ(q)[x] as desired.

Definition 7.20. Assume AKLBG, and let q be a prime of B lying above p = A∩ q. The
inertia group Iq = Iq(L/K) is the kernel of the homomorphism πq : Dq → Autκ(p)(κ(q)).

Corollary 7.21. Assume AKLBG and let q be a prime of B lying above p = A ∩ q. We
have an exact sequence of groups

1 −→ Iq −→ Dq −→ Autκ(p)(κ(q)) −→ 1,

and |Iq| = ep[κ(q) : κ(p)]i.
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For the sake of convenience, let us now assume that κ(q) is a separable extension of
κ(p); this holds, for example, whenever κ(p) is finite, which includes the main case we care
about, where K is a global field (a number field or a function field). Under this assumption
κ(q) is a Galois extension of κ(p), and we have

Dq/Iq ' Autκ(p)(κ(q)) = Gal(κ(q)/κ(p)).

Proposition 7.22. Assume AKLBG, let q be a prime of B lying above p = A ∩ q, and
assume that κ(q) := B/q is a separable extension of κ(p) := A/p. We then have the tower
of field extensions K ⊆ LDq ⊆ LIq ⊆ L with degrees

ep = [L : LIq ] = |Iq|;
fp = [LIq : LDq ] = |Dq/Iq|;
gp = [LDq : K] = #{q|p}.

The fixed fields LDq and LIq in the proposition are the decomposition field and the
inertia field associated to q.

Proof. The third statement follows immediately from Lemma 7.18 and [L : K] = epfpgp.
The second follows from Proposition 7.19 and the assumption that κ(q)/κ(/p) is separable,
since Dq/Iq ' Gal(κ(q)/κ(p) has cardinality fp = [κ(q) : κ(p)]. Then [L : LDq ] = |Dq| =
epfp and |Dq| = |Iq| · |Dq/Iq| imply the third.

We now consider an intermediate field E lying between K and L. Let us fix a nonzero
prime q of B lying above the prime p = q ∩K, and let qE = q ∩ E, so that q|qE and qE |p.

To simplify the notation we use κ(p), κ(qE), and κ(q) to denote the residue fields
of p, qE , and q as above, and define Gq(L/K) := Autκ(p)(κ(q)) and similarly define the

automorphism groups G(L/E) and G(E/K).

Proposition 7.23. Assume AKLBG, let E be an intermediate field between K and L. Let
q be a nonzero prime of B and let qE = q ∩ E and p = q ∩K. Then

Dq(L/E) = Dq(L/K) ∩Gal(L/E) and Iq(L/E) = Iq(L/K) ∩Gal(L/E).

If E/K is Galois, then we have the following commutative diagram of exact sequences:

1 1 1

1 Iq(L/E) Iq(L/K) IqE (E/K) 1

1 Dq(L/E) Dq(L/K) DqE (E/K) 1

1 Gq(L/E) Gq(L/K) GqE (E/K) 1

1 1 1
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Proof. For the first claim, each σ ∈ Dq(L/E) lies in Gal(L/E) ⊆ Gal(L/K) and stabilizes q
as an element of {q|qE}, but qE ⊆ E, so σ stabilizes q as an element of {q|p} and lies in
Dq(L/K). Conversely, each σ ∈ Dq(L/K) ∩ Gal(L/E) stabilizes q as an element of {q|p}
and fixes E ⊇ qE and therefore is an element of Gal(L/E) that stabilizes q as an element
of {q|qE}, hence an element of Dq(L/E). For the second claim, the restriction of the map
πq : Dq(L/K) → Gq(L/K) to Dq(L/E) is precisely the map πq : Dq(L/E) → Gq(L/E),
hence the kernels agree after intersecting with Gal(L/E).

The exactness of the three columns follows immediately from Corollary 7.21. We now
argue exactness of the first two rows. In both cases the rows correspond to an inclusion
of automorphisms of L that fix E (and hence fix K), followed by restriction to E. Injec-
tivity of the inclusion map is clear, and exactness at the middle term is also clear (the
automorphisms of L that restrict to the trivial automorphism on E are precisely the ones
that fix E). Surjectivity of the restriction map follows from the fact that we can extend any
automorphism of E to an automorphism of L, since L/E is an algebraic extension (indeed,
L = E(α) for some α that we can leave fixed, since L/E is finite separable).

For the bottom row we have the tower of residue fields κ(p) ⊆ κ(qE) ⊆ κ(q), and get an
exact sequence as follows: G(L/E) is included in G(L/K) which surjects onto G(E/K) via
restriction, and the elements of G(L/K) whose restriction is the identity are precisely the
elements ofG(L/E) (this is just standard Galois theory, it applies to any tower F1 ⊆ F2 ⊆ F3

with F3/F1 and F2/F1 both normal).
We now argue commutativity of the four corner squares (this implies commutativity of

the whole diagram). The upper left square commutes because all the maps are inclusions.
The upper right square commutes because inclusion and restriction commute. The lower
left square commutes because the horizontal maps are inclusions and the vertical maps
coincide on DqE (L/E). The lower right square the horizontal maps are restrictions and the
vertical maps agree after restriction to E.
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