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21 Statement of the theorems of global class field theory

In this lecture we refine the correspondence between quotients of ray class groups and
subfields of ray class fields given by the Artin map so that we can more precisely state the
main theorems of global class field theory. Let us first recall the notational setup.

We have a number field K and a modulus m = m0m∞ that we view as a formal product
over the places of K; the product over finite places m0 can be any OK-ideal (so primes p|m0

may occur with multiplicity), and the product over infinite places m∞ is a product of real
places (with no multiplicity, so m∞ can be viewed as a set). We then define

• ImK ⊆ IK , the subgroup of fractional ideals prime to m;

• Km ⊆ K×, the subgroup of elements α ∈ K× for which (α) ∈ ImK ;

• Km,1 ⊆ Km, the subgroup of elements α ∈ Km such that vp(α− 1) ≥ vp(m0) for p|m0

and αv > 0 for v|m∞ (here αv ∈ R is the image of α under the real-embedding v);

• Pm
K ⊆ ImK the subgroup of principal fractional ideals (α) ∈ ImK with α ∈ Km,1;

• Spl(L), the set of primes of K that split completely in an extension L/K.

The ray class group ClmK is the quotient ImK/Pm
K . The corresponding ray class field is a

finite abelian extension L/K for which the kernel of the Artin map

ψm
L/K : ImK → Gal(L/K)

is equal to Pm
K ; equivalently, {p ∈ Pm

K} ∼ Spl(L) (recall S ∼ T means T − S and S − T are
finite). The ray class field is denoted K(m), and ψm

K(m)/K induces an isomorphism

Gal(K(m)/K) ' ImK/Pm
K = ClmK

between the Galois group of the ray class field K(m) and the ray class group ClmK . More
generally, if L ⊆ K(m) is any subfield of the ray class field, the kernel of the Artin map
ψm
L/K is a congruence subgroup C, a group of fractional ideals prime to m for which

Pm
K ⊆ C ⊆ ImK ,

and ψm
L/K induces an isomorphism

Gal(L/K) ' ImK/C ' ClmK/C,

where C is the image of C in ClmK .
Before we proceed, let us be clear on what we have and have not proved so far. We

have proved that the Artin map is surjective (see Theorem 20.15), and we defined the ray
class field K(m) to be an extension L/K for which kerψm

L/K = Pm
K . We have not proved

that such a field K(m) exists, but we do know that if it does, it is uniquely determined by
kerψK(m)/K = Pm

K , which depends only on the modulus m, since {p ∈ Pm
K} ∼ Spl(K(m))

uniquely determines K(m), by Theorem 20.14.
Assuming K(m) exists, if L is a subfield of K(m) then kerψm

L/K is a subgroup of ImK
containing Pm

K (a congruence subgroup). To prove that every abelian extension L/K lies
in some ray class field K(m) it is enough to show that kerψm

L/K contains Pm
K for some

modulus m, since then Spl(K(m)) - Spl(L) and therefore L ⊆ K(m), by Theorem 20.14.
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This is the other half of Artin reciprocity (the hard half), which together with the existence
of the ray class fields K(m) is one of the main theorems of class field theory. In this lecture
we want to better understand the congruence subgroups that we will eventually show arise
as kernels of Artin maps, and to specify a minimal modulus m for which we should expect
a given finite abelian extension L/K to lie in a subfield of the ray class field K(m) (the
conductor of the extension). So far we have not addressed this question even for K = Q (but
see Problem Set 9); our proof of the Kronecker-Weber theorem showed that every abelian
extension lies in some cyclotomic field Q(ζm), but we made no attempt to determine such
an integer m (or more precisely, a modulus m of the form m = (m)∞ or m = (m)).

21.1 Congruence subgroups

Our presentation here is adapted from [1, §3.3] (but our notation differs slightly).

Definition 21.1. Let K be a number field and let m be a modulus for K. A congruence
subgroup (for the modulus m) is a subgroup C of ImK that contains Pm

K . We write C for the
image of C in ImK/Pm

K = ClmK .

As noted above, congruence subgroups are the groups we expect to arise as the kernel
of an Artin map ψm

L/K : ImK → Gal(L/K) associated to a finite abelian extension L/K, for
a suitable choice of the modulus m. In general the modulus m that we use to define ψm

L/K
may be any modulus divisible by all the primes of K that ramify in L, and if we have one
modulus m for which Pm

K ⊆ kerψm
L/K (so kerψm

L/K is in fact a congruence subgroup), then

every modulus divisible by m will have the same property (making m bigger only makes
it easier for kermL/K to contain Pm

K). For every such m, if C = kerψm
L/K is a congruence

subgroup with image C in ImK/Pm
K = ClmK , we will have isomorphisms

ImK/C ' ClmK/C ' Gal(L/K)

that allow us to view L as a subfield of the ray class fieldK(m); namely, the unique subfield L
of K(m) for which Spl(L) ∼ {p : p ∈ C} (recall that S ∼ T means the symmetric difference of
the sets S and T is finite). There are thus infinitely many congruence subgroups associated
to each finite abelian extension L/K; we now wish to define an equivalence relation on
congruence subgroups that will put all the congruence subgroups associated to L/K in a
single equivalence class, and to distinguish a unique representative for each class.

We should emphasize that the kernel of the Artin map ψm
L/K is not always a congruence

subgroup. There are constraints on the modulus m that must be satisfied beyond the basic
requirement that m is divisible by all the primes of K that ramify in L. For example, the
cyclic cubic extension L := Q[x]/(x3 − 3x− 1)/Q is ramified only at 3 but clearly does not
lie in the cyclotomic field Q(ζ3), so the modulus m = (3)∞ will not work (but the modulus
m = (9) does, in fact L is the ray class group of Q for this modulus). One of our other
goals in this lecture is to associate to each abelian extension L/K a minimal modulus c, the
conductor of the extension L/K, with the property that ψm

L/K is a congruence subgroup
whenever m is divisible by c and otherwise not.

Definition 21.2. Let K be a number field with moduli m1 and m2. If C1 is a congruence
subgroup for m1 and C2 is a congruence subgroup for m2 then we say that C1 and C2 are
equivalent and write C1 ∼ C2 whenever

Im1
K ∩ C2 = Im2

K ∩ C1,

as subgroups of IK . Note that if m1 = m2 this reduces to C1 = C2.
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Proposition 21.3. Let K be a number field. The relation C1 ∼ C2 is an equivalence relation
on the set of congruence subgroups in IK . Moreover, C1 ∼ C2 if and only if Im1

K /C1 ' Im2
K /C2,

equivalently, Clm1
K /C1 ' Clm2

K /C2, where m1 and m2 are the moduli of C1 and C2 respectively.

Proof. The relation ∼ is clearly reflexive and symmetric. To show that it is transitive,
suppose C1 ∼ C2 and C2 ∼ C3. Let a ∈ Im3

K ∩C1 and pick α ∈ Km1m2m3,1 so that αa ∈ Im1m2m3
K

(this is possible by Lemma 20.4 and Theorem 3.26). Then (α) ∈ Pm1m2m3
K ⊆ Pm1

K ⊆ C1 and
a ⊆ C1, so αa ∈ C1, and we also have αa ∈ Im2

K , so

αa ∈ Im2
K ∩ C1 = Im1

K ∩ C2 ⊆ C2,

since C1 ∼ C2, and αa ∈ Im3
K , so

αa ∈ Im3
K ∩ C2 = Im2

K ∩ C3 ⊆ C3,

since C2 ∼ C3. We have (α) ∈ Pm1m2m3
K ⊆ Pm3

K , so (α) ∈ C3 and therefore (α)−1 ∈ C3, since
C3 is a group. Thus α−1αa = a ∈ C3, and we also have a ∈ C1 ⊆ Im1

K , so a ∈ Im1
K ∩ C3. This

proves that
Im3
K ∩ C1 ⊆ I

m1
K ∩ C3

and the reverse inclusion follows by symmetry (swap C1 and C3). Thus C1 ∼ C3, which
proves transitivity, and ∼ is therefore an equivalence relation.

To prove the second claim, for any a ∈ Im1
K we can pick α ∈ Km1m2,1 such that αa ∈ Im2

K

as above, and the image of (α)a in Im2
K /C2 does not depend on the choice of α, since for

any other α′ ∈ Km1m2,1 we have α/α′ ∈ Km1m2,1 and (α/α′) ∈ Pm1m2
K ⊆ Pm2

K ⊆ C2, so
αa ≡ α′a mod C2. We thus have a well-defined group homomorphism Im1

K /C1 → Im2
K /C2,

that is invertible (via multiplication by α−1), hence injective. By symmetry, we also have
an injective homomorphism in the reverse direction, and therefore an isomorphism, because
the groups are finite (they are both subgroups of ray class groups). This proves the forward
implication. For the reverse implication, assume Im1

K /C1 ' Im2
K /C2 and let a ∈ Im2

K ∩ C1.
Then a ∈ C1 ⊆ Im1

K has trivial image in Im1
K and therefore must also have trivial image in

Im2
K /C2 and lie in C2. Thus a ∈ Im1

K ∩ C2, and therefore Im2
K ∩ C1 ⊆ I

m1
K ∩ C2; the reverse

inclusion follows by symmetry and therefore Im2
K ∩ C1 = Im1

K ∩ C2 and C1 ∼ C2.

Within an equivalence class of congruence subgroups there can be at most one congru-
ence subgroup for each modulus (since C1 ∼ C2 ⇔ C1 = C2 when C1 and C2 have the same
modulus), thus the partial ordering of moduli by divisibility induces a partial ordering of
the congruence subgroups within an equivalence class. We now show that in fact this partial
order has a unique minimal element.

Lemma 21.4. Let C1 be a congruence subgroup of modulus m1 for a number field K. There
exists a congruence subgroup C2 of modulus m2|m1 equivalent to C1 if and only if

Im1
K ∩ P

m2
K ⊆ C1,

in which case C2 = C1Pm2
K .

Proof. Note that m2|m1 implies Im1
K ⊆ I

m2
K , so C1 ⊆ Im1

K ⊆ I
m2
K .

Suppose C2 ∼ C1 has modulus m2. Then Im1
K ∩ C2 = Im2

K ∩ C1 = C1, and Pm2
K ⊆ C2, so

Im1
K ∩P

m2
K ⊆ C1 as claimed. Now suppose Im1

K ∩P
m2
K ⊆ C1, and let C2 := C1Pm2

K . Then C2 is
a congruence subgroup of modulus m2 and

C1(Im1
K ∩ P

m2
K ) = Im1

K ∩ C1P
m2
K = Im1

K ∩ C2,
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and C1(Im1
K ∩P

m2
K ) ⊆ C1C1 = C1, so Im1

K ∩C2 ⊆ C1; in fact equality holds since C1 ⊆ Im1
K and

C1 ⊆ C2. Thus Im1
K ∩ C2 = C1 = Im2

K ∩ C1 and C1 ∼ C2.
The equivalence class of C1 contains at most one congruence subgroup of modulus m2,

so if one exists it must be C2 = C1Pm2
K .

Proposition 21.5. Let C1 ∼ C2 be subgroups of modulus m1 and m2, respectively. There
exists a congruence subgroup C equivalent to C1 and C2 with modulus n := gcd(m1,m2).

Proof. Put m := lcm(m1,m2) and D := Im2
K ∩ C1 = Im1

K ∩ C2; then

Pm
K = Pm1

K ∩ P
m2
K ⊆ D ⊆ I

m
K ,

so D is a congruence subgroup of modulus m, and we have

ImK ∩ P
m1
K ⊆ D and ImK ∩ P

m2
K ⊆ D,

so D ∼ C1 ∼ C2, by Lemma 21.4. To prove the existence of an equivalent congruence
subgroup C of modulus n it suffices to show ImK ∩ Pn

K ⊆ D (again by Lemma 21.4).
So let a = (α) ∈ ImK ∩ Pn

K , and choose β ∈ Km ∩ Km2,1 so that αβ ∈ Km1,1 (this is
possible by Theorem 3.26 because m = lcm(m1,m2) and n = gcd(m1,m2)). Then (β) ∈ D
and βa ∈ ImK ∩P

m1
K ⊆ D, so β−1βa = a ∈ D. Thus ImK ∩P n

K ⊆ D and therefore C = DPn
K is

a congruence subgroup of modulus n equivalent to D ∼ C1 ∼ C2.

Corollary 21.6. Let C be a congruence subgroup of modulus m for a number field K. There
is a unique congruence subgroup in the equivalence class of C whose modulus c divides the
modulus of every congruence subgroup equivalent to C.

Definition 21.7. Let C be a congruence subgroup of modulus m for a number field K.
The unique modulus given by Corollary 21.6 is the conductor of C, denoted c(C). If the
conductor of C is equal to its modulus then we say that C is primitive.

Proposition 21.8. Let C be a primitive congruence subgroup of modulus m = c(C) for
a number field K. Then m is the conductor of every congruence subgroup of modulus m
contained in C; in particular, m is the conductor of Pm

K .

Proof. Let C0 ⊆ C be a congruence subgroup of modulus m and let c be its conductor. Then
c|m and ImK ∩ Pc

K ⊆ C0 ⊆ C, by Lemma 21.4, and this implies that there is a congruence
subgroup of modulus c equivalent to C, and therefore m|c, so c = m.

The proposition implies that a modulus m occurs as a conductor if and only if Pm
K

is primitive; this does not always hold (consider K = Q and m = (2), for example; the

conductor of P(2)
Q is trivial).

21.2 Dirichlet’s theorem for number fields

We now want to prove a generalization of Dirichlet’s theorem on primes in arithmetic
progressions. We first need to generalize our notion of a Dirichlet character.

Definition 21.9. Let m be a modulus for a number field K. A character χ of modulus m
is a group homomorphism ImK → C× whose kernel contains Pm

K . The conductor c(χ) of χ
is the conductor of its kernel (which we note is a congruence subgroup of modulus m), and
we say that χ is primitive if its modulus is equal to its conductor. If C is a congruence
subgroup of modulus m we say that χ is a character for C if its kernel contains C. The
principal character χ0 is the unique character for ImK ; it has trivial conductor.
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Each character χ of modulus m induces a character of the finite abelian group ClmK and
conversely; in particular, there are exactly hm := #ClmK distinct characters of modulus m.
For K = Q a character χ of modulus m = (m)∞ is the same thing as a Dirichlet character of
modulus m (see Lecture 17), and the notions of conductor and primitive character coincide.

For each character χ of modulus m we have an associated Weber L-series

L(s, χ) :=
∏
p6 |m

(
1− χ(p)N(p)−s

)−1
=
∑
a⊥m

χ(a)N(a)−s,

where the sum is over OK-ideals a prime to m; the sum and product both converge (and
are nonzero) on Re(s) > 1.

Proposition 21.10. Let χ be a character of modulus m for a number field K of degree n.
Then L(s, χ) extends to a meromorphic function on Re(s) > 1 − 1

n that is holomorphic if
χ 6= χ0 and for χ = χ0 has only a simple pole at s = 1.

Proof. Let δ = 1
n . For the principal character χ = χ0 we have

L(s, χ0) = ζK(s)
∏
p|m

(1−N(p)−s),

where the finite product is entire and nonvanishing; thus, like ζK(s), the L-series L(s, χ0)
extends to a meromorphic function on Re(s) > 1 − δ with a simple pole at s = 1, by
Theorem 18.13 (the analytic class number formula).

For χ 6= χ0 the function L(s, χ) is holomorphic on Re(s) > 1− δ. To see this, first note
that, as in the analytic class number formula, there is a real ρ > 0 (depending on K and m)
for which we have

#{a ∈ ImK : a ⊆ OK , N(a) ≤ t} = ρt+O
(
t1−δ

)
(as t→∞).

Moreover, exactly as in the proof of the analytic class number formula, this also holds if
we restrict to the set Sc of OK-ideals a ⊥ m that lie in any particular ideal class c ∈ ClmK ,
provided we replace ρ with ρ := ρ/#ClmK (the constant is the same for every class; we don’t
care about its actual value). We then have

L(s, χ) =
∑
c∈ClmK

χ(c)ζK,Sc(s)

=
∑
c∈ClmK

χ(c)(ζK,Sc(s)− ρζ(s)) +
∑
c∈ClmK

χ(c)ρζ(s),

where ζK,Sc is the partial Dedekind zeta function (Definition 20.7). For χ 6= χ0 the second
sum vanishes (by Corollary 17.10), and Lemmas 18.10 and 18.12 imply that the first sum
is holomorphic on Re(s) > 1− 1

n .

We now prove an analog of Dirichlet’s theorem on primes in arithmetic progressions,
subject to the assumption that L(1, χ) 6= 0 for χ 6= χ0. Recall that the nonvanishing of
L(1, χ) was key to our proof of Dirichlet’s theorem, and we used the analytic class number
formula for Q(ζm) (the ray class field Q((m)∞)), to prove it. The same approach will work
in our more general setting, provided we assume the ray class field K(m) exists.
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Theorem 21.11. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. The set of primes S := {p ∈ C} has Dirichlet density

d(S) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= χ0 for C,
0 otherwise.

Proof. We proceed as we did when proving Dirichlet’s theorem (see §17.6). We first con-
struct the indicator function for the set S:

1

n

∑
χ

χ(p) =

{
1 if p ∈ C,
0 otherwise,

where the sum is over the Dirichlet characters for C; note that this is equivalent to summing
characters of the finite abelian group G := ImK/C on the image of p in G, so we may apply
(Corollary 17.10). As s→ 1+ we have

logL(s, χ) ∼
∑
p6 |m

χ(p)N(p)−s,

and therefore ∑
χ

logL(s, χ) ∼
∑
χ

∑
p6 |m

χ(p)N(p)−s

∼ n
∑
p∈C

N(p)−s.

By Proposition 21.10, we may write

L(s, χ) = (s− 1)m(χ)g(s)

for some function g(s) that is holomorphic and nonvanishing on a neighborhood of 1, with
m(χ) := ords=1L(s, χ) equal to −1 when χ = χ0 and nonnegative otherwise. We thus have

log
1

s− 1
−
∑
χ 6=χ0

m(χ) log
1

s− 1
∼ n

∑
p∈cC

N(p)−s.

Dividing both sides by n log 1
s−1 yields

1−
∑

χ 6=χ0
m(χ)

n
∼
∑

p∈C N(p)−s

log 1
s−1

(as s→ 1+),

thus

d(S) = d({p ∈ C}) = lim
s→1+

∑
p∈C N(p)−s

log 1
s−1

=
1−

∑
χ 6=χ0

m(χ)

n
.

The m(χ) are integers and the Dirichlet density is nonnegative, so either m(χ) = 0 for all
χ 6= χ0, in which case L(1, χ) 6= 0 for all χ 6= 0 and d(S) = 1

n , or m(χ) = 1 for exactly one
of the χ 6= χ0 and d(S) = 0.
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Corollary 21.12. Let C be a congruence subgroup of modulus m for a number field K and
let n := [ImK : C]. For every ideal a ∈ ImK the set S := {p ∈ aC} has Dirichlet density

d(S) =

{
1
n if L(1, χ) 6= 0 for all characters χ 6= χ0 for C,
0 otherwise.

Proof. The proof is the same as in Theorem 21.11, except we now use the indicator function

1

n

∑
χ

χ(a)−1χ(p) =

{
1 if p ∈ aC,
0 otherwise,

and obtain ∑
χ

χ(a)−1 logL(s, χ) ∼
∑
χ

∑
p6 |m

χ(a)−1χ(p)N(p)−s ∼ n
∑
p∈aC

N(p)−s.

The rest of the proof is the same.

Corollary 21.13. Let L/K be an abelian extension of number fields and let C be a congru-
ence subgroup for a modulus m of K. If Spl(L) - C then

[ImK : C] ≤ [L : K]

and L(1, χ) 6= 0 for all characters χ 6= χ0 for C; moreover, if Spl(L) ∼ {p ∈ C}, then
equality holds.

Proof. We know from Theorem 20.11 that Spl(L) has polar density 1/[L : K], and this is
also its Dirichlet density, by Proposition 20.9. Since the sets Spl(L) and {p ∈ C} both have
Dirichlet densities (by Theorem 21.11) and Spl(L) - {p ∈ C} (by assumption), we must
have

1

[L : K]
= d(Spl(L)) ≤ d({p ∈ C}) =

1

[ImK : C]
,

since the RHS cannot be zero, in which case L(1, χ) 6= 0 for all characters χ 6= χ0 for C and
[ImK : C] ≤ [L : K] as claimed, and the last statement follows.

Corollary 21.14. Let C be a congruence subgroup of modulus m for a number field K. If
the ray class field K(m) exists then L(1, χ) 6= 0 for all characters χ 6= χ0 of modulus m.

Proof. Apply the previous corollary to L = K(m) and C = kerψK(m)/K = Pm
K .

21.3 The conductor of an abelian extension

We now introduce another notion of conductor attached to an abelian extension of number
fields. Note that a modulus m for a number field K is a product over places v ∈MK , each
of which corresponds to a local field Kv, the completion of K at v. It thus makes sense to
view a modulus (and in particular, a conductor) as a product of local moduli, each of which
is a power of the place v of the local field Kv (if Kv ' C this power must be v0 = 1 and if
Kv ' R it can be v0 = 1 or v1 = v).
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Definition 21.15. Let L/K be a finite abelian extension of local fields. The conductor
c(L/K) is defined as follows.1 If K is archimedean then c(L/K) =∞ if K ' R and L ' C
and c(L/K) = 1 otherwise. If K is nonarchimedean with maximal ideal p ⊆ OK then
c(L/K) = pf , where

f := min{n : 1 + pn ⊆ NL/K(L×)}

(here 1 + pn is a subgroup of O×K , with 1 + p0 := O×K). If L/K is a finite abelian extension
of global fields then

c(L/K) :=
∏

v∈MK

c(Lw/Kv),

where Kv is the completion of K at v and Lw is the completion of L at a place w above v.
(the fact that L/K is Galois ensures that this does not depend on the choice of w).

The product defining c(L/K) is finite; it is not hard to show that only ramified primes
may divide the conductor. More generally, we have the following.

Proposition 21.16. Let L/K be a finite abelian extension. For each prime p of K we have

vp(c(L/K)) =


0 if and only if p is unramified,

1 if and only if p is ramified tamely,

≥ 2 if and only if p is ramified wildly.

Proof. See Problem Set 11.

Thus the conductor c(L/K) of an abelian extension divides the discriminant DL/K ; the
conductor and discriminant are divisible by the same set of primes, but the valuation of the
conductor at these primes is often much smaller than that of the discriminant. For example,
the discriminant of Q(ζp) is (p)p−2, but its conductor is (p).

21.4 Norm groups

We can now identify a candidate for the kernel of the Artin map ψm
L/K . Recall from Lecture 6

that the ideal norm map NL/K : IL → IK can be defined by∏
i

qni
i 7→

∏
i

pnifi
i ,

where fi := [Fqi : Fpi ] is the residue field degree.

Definition 21.17. Let L/K be a finite abelian extension of number fields and let m be a
modulus for K divisible by the conductor of L/K (and let m also denote the modulus mOL
for L). The norm group (or Takagi group) associated to m is the congruence subgroup

Tm
L/K := Pm

KNL/K(ImL ).

We now observe that Tm
L/K contains every prime p of K coprime to m that splits com-

pletely in L, since these primes all have residue field degree 1 and therefore lie in the image
of the ideal norm map NL/K . These are precisely the primes that lie in the kernel of the
Artin map ψm

L/K , thus

kerψm
L/K ⊆ T

m
L/K .

1Many authors use f(L/K) rather than c(L/K) to denote the conductor.
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The proof of Artin reciprocity essentially boils down to proving that the reverse inclusion
holds (and in particular, that kerψm

L/K is a congruence subgroup). As a first step in this
direction we note the following.

Theorem 21.18. Let L/K be a Galois extension of number fields and let m be a modulus
for K. Then

[ImK : Tm
L/K ] ≤ [L : K].

Proof. Consider the congruence subgroup C = Tm
L/K . As noted above, Spl(L) - Tm

L/K , so
the inequality follows immediately from Corollary 21.13.

Corollary 21.19. Let χ 6= χ0 be a character for a modulus m of a number field K. If there
exists a Galois extension L/K for which Tm

L/K ⊆ kerχ then L(1, χ) 6= 0.

Theorem 21.18 is known as either the “first” or “second” fundamental inequality of class
field theory, depending on the author; it was proved first (by Weber) and originally called
the first fundamental inequality, but today is often (but not always) called the second
fundamental inequality. The reverse inequality is more difficult and is proved by other
methods; note that once we establish equality, we can conclude that kerψm

L/K = Tm
L/K ,

since we have already shown kerψm
L/K ⊆ T

m
L/K .

21.5 The main theorems of class field theory (ideal-theoretic version)

We can give a more precise statement of the main theorems of class field theory. Let K be
a number field and let m be a modulus for K.

• Existence: The ray class field K(m) exists.

• Completeness: If L/K is finite abelian then L ⊆ K(m) if and only c(L/K) |m.
In particular, every finite abelian L/K lies in a ray class field.

• Artin reciprocity: For each subextension L/K of K(m)/K, the Artin map induces
a canonical isomorphism between Gal(L/K) and ClmK/C, where C = Tm

L/K = kerψm
L/K .

We can say a bit more about Artin reciprocity. The conductor of C = Tm
L/K = kerψm

L/K

is equal to the conductor of L/K and the Artin map gives an order preserving bijection

{abelian extension L/K with c(L/K) |m} ←→ {congruence subgroups C for m}

compatible with the Galois correspondence between quotients of ClmK and subfields of K(m).

21.6 The Hilbert class field

Let K be a number field. The ray class field K(1) for the trivial modulus is known as
the Hilbert class field, which has a number of distinguishing properties. First, the Galois
group Gal(K(1)/K) is isomorphic to the class group ClK . Second, the extension K(1)/K
is unramified, since it follows from the completeness theorem that it has conductor 1.
Moreover, K(1) is the maximal unramified abelian extension of K; every finite unramified
abelian extension of K must have trivial conductor, hence lie in K(1), and if there were an
infinite unramified abelian extension L/K it would necessarily contain a finite unramified
abelian extension of K that does not lie in K(1) (consider K(α) for any α ∈ L not in K(1)).
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This demonstrates a remarkable fact: the maximal unramified abelian extension of a
number field is always a finite extension. Indeed, it is common to simply define the Hilbert
class field of a number field K as the maximal unramified abelian extension of K, rather
than as the ray class field K(1) (of course the two coincide). It is not at all obvious that
the maximal unramified abelian extension should be finite, in fact many number fields do
have infinite unramified extensions (that are nonabelian).

Indeed, one way to construct such an extension is by considering a tower of Hilbert class
fields. Starting with a number field K0 := K, we K1 = K0(1) be its Hilbert class field. We
then define K2 := K1(1) as the Hilbert class field of K1, and continue in this fashion to
obtain an infinite tower of finite abelian extensions:

K0 ⊆ K1 ⊆ K2 ⊆ · · ·

and consider the extension of K given by the union of all these fields L :=
⋃
Kn. There are

two possibilities: either we eventually reach a field Kn with class number 1, in which case
Km = Kn for all m ≥ n and L/K is a finite unramified extension of K, or this does not
happen and L/K is an infinite unramified extension of K (which is necessarily nonabelian).
It was a longstanding open question as to whether the latter could happen, but in 1964
Golod and Shafarevich proved that indeed it can; in particular, this occurs for the field

K = Q(
√
−30030) = Q(

√
−2 · 3 · 5 · 7 · 11 · 13).
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