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2 Localization and Dedekind domains

2.1 Localization of rings

Let A be a commutative ring (unital, as always), and let S be a multiplicative subset of A;
this means that S is closed under finite products (including the empty product, so 1 ∈ S),
and S does not contain zero. To simplify matters let us further assume that S contains no

zero divisors of A; equivalently, the map A
×s→ A is injective for all s ∈ S.

Definition 2.1. The localization of A with respect to S is the ring of equivalence classes

S−1A := {a/s : a ∈ A, s ∈ S} / ∼

where a/s ∼ a′/s′ if and only if as′ = a′s. This ring is also sometimes denoted A[S−1].

We canonically embed A in S−1A by identifying each a ∈ A with the equivalence class
a/1 in S−1A; our assumption that S has no zero divisors ensures that this map is injective.
We thus view A as a subring of S−1A, and when A is an integral domain (the case of interest
to us), we may regard S−1A as a subring of the fraction field of A., which can be defined as
A−1A, the localization of A with respect to itself. If S ⊆ T are multiplicative subsets of A
(neither containing zero divisors), we may view S−1A as a subring of T−1A.

If ϕ : A → B is a ring homomorphism and b is a B-ideal, then φ(A−1) is an A-ideal
called the contraction of b (to A) and sometimes denoted bc; when A is a subring of B and
ϕ is the inclusion map we simply have bc = b∩A. If a is an A-ideal then ϕ(a) is in general
not a B-ideal; but the B-ideal (ϕ(a)) generated by ϕ(a) is called the extension of a (to B)
and sometimes denoted ae. In our setting with B = S−1A and ϕ inclusion, and we have

ae = aB := {ab : a ∈ a, b ∈ B}. (1)

Note that we can write any sum a1/s1 + · · · an/sn as a/s′ for some a ∈ A with s = s1 · · · sn
in S (here we are assuming S has no zero divisors), so aB is in fact an ideal.

We clearly have a ⊆ ϕ−1((ϕ(a))) = aec and bce = (ϕ(ϕ−1(b))) ⊆ b; one might ask
whether these inclusions are equalities. In general the first is not: if B = S−1A and
a ∩ S 6= ∅ then ae = aB = B and aec = B ∩A are unit ideals, but we may still have a ( A.
However when B = S−1A the second inclusion is always an equality; see [1, Prop. 11.19] or
[2, Prop. 3.11] for a short proof. We also note the following theorem.

Theorem 2.2. The map q 7→ q∩A defines a bijection from the set of prime ideals of S−1A
and the set of prime ideals of A that do not intersect S. The inverse map is p 7→ pS−1A.

Proof. See [1, Cor. 11.20] or [2, Prop. 3.11.iv].

Remark 2.3. An immediate consequence of (1) is that if a1, . . . , an ∈ A generate a as an
A-ideal, then they also generate ae = aB as a B-ideal. As noted above, when B = S−1A
we have b = bce, so every B-ideal is of the form ae (take a = bc). It follows that if A is
noetherian then so are all its localizations, and if A is a PID then so are all of its localizations.

An important special case of localization occurs when p is a prime ideal in an integral
domain A and S = A − p (the complement of the set p in the set A). In this case it is
customary to denote S−1A by

Ap := {a/b : a ∈ A, b 6∈ p}/ ∼, (2)
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and call it the localization of A at p. The prime ideals of Ap are then in bijection with the
prime ideals of A that lie in p. It follows that pAp is the unique maximal ideal of A and Ap

is therefore a local ring (when the term localization). We have

A ⊆ Ap ⊆ FracA.

If p = (0) then Ap = FracA, but otherwise Ap is properly contained in FracA.

Warning 2.4. The notation in (2) makes it tempting to assume that if a/b is an element
of FracA, then a/b ∈ Ap if and only if b 6∈ p. This is not necessarily true! As an element of
FracA, the notation “a/b” represents an equivalence class [a/b], and if [a/b] = [a′/b′] with
b′ 6∈ Ap, then in fact [a/b] ∈ Ap. As a trivial example, take A = Z, p = (3), a/b = 9/3 and
a′/b′ = 3/1. You may object that we should write a/b in lowest terms, but when A is not
a unique factorization domain it is not clear what this means.

Example 2.5. For a field k, let A = k[x] and p = (x− 2). Then

Ap = {f ∈ k(x) : f is defined at 2}.

The ring A is a PID, so Ap is a PID with a unique nonzero maximal ideal, hence a DVR.
Its maximal ideal is

pAp = {f ∈ k(x) : f(2) = 0}.

The valuation on the field k(x) = FracA corresponding to the valuation ring Ap measures
the order of vanishing of functions f ∈ k(x) at 2. The residue field is Ap/pAp ' k, and the
quotient map Ap � Ap/pAp sends f to f(2).

Example 2.6. Let p ∈ Z be a prime. Then Z(p) = {a/b : a, b ∈ Z, p - b}. As in the previous
example, Z is a PID and Z(p) is a DVR; the valuation on Q is the p-adic valuation.

2.2 Localization of modules

The concept of localization generalizes to modules. As above, let A be a ring and let S a

multiplicative subset of A If M is an A-module such that the map M
×s→M is injective for

all s ∈ S (this is a strong assumption that imposes constraints on both S and M , but it
holds in the cases we care about), then the set

S−1M := {m/s : m ∈M, s ∈ S}/ ∼

is an S−1A-module (the equivalence is m/s ∼ m′/s′ ⇔ s′m = sm′, as usual). We could
equivalently define S−1M := M⊗AS

−1A; see [2, Prop. 3.5]. We will usually take S = A−p,
in which case we write Mp for S−1M , just as we write Ap for S−1A.

Proposition 2.7. Let A be a subring of a field K, and let M be an A-module contained in
a K-vector space V (equivalently, for which the map M →M ⊗A K is injective).1 Then

M =
⋂
m

Mm =
⋂
p

Mp,

where m ranges over the maximal ideals of A and p ranges over the prime ideals of A; the
intersections takes place in V .

1The image is a tensor product of A-modules that is also a K-vector space. We need the natural map to
be injective in order to embed M in it. Note that V necessarily contains a subspace isomorphic to M ⊗A K.
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Proof. The fact that M ⊆
⋂

mMm is immediate. Now suppose x ∈
⋂

mMm. The set
{a ∈ A : ax ∈ M} is an A-ideal a, and it is not contained in any maximal ideal m, since
a ⊆ m implies x 6∈Mm. Therefore a = A, so x = 1 · x ∈M , since 1 ∈ {a ∈ A : ax ∈M}.

We now note that each Mp contains some Mm (since each p is contained in some m),
and every maximal ideal is prime, so ∩mMm = ∩pMp.

Several important special cases of this proposition occur when A is an integral domain,
K is its fraction field, and M is an A-submodule of K. The ideals I of A are precisely its
A-submodules, each of which can be localized as above, and the result is just the extension
of the ideal to the corresponding localization of A. In particular, if p is a prime ideal then

Ip = IAp,

and more generally, Mp = MAp. We also have the following corollary of Proposition 2.7.

Corollary 2.8. Let A be an integral domain. Every ideal I of A (including I = A) is equal
to the intersection of its localizations at the maximal ideals of A (and also to the intersection
of its localizations at the prime ideals of A).

Example 2.9. If A = Z then Z =
⋂

p Z(p) in Q.

2.3 Dedekind domains

Proposition 2.10. Let A be a noetherian domain. The following are equivalent:

(i) For every nonzero prime ideal p ⊂ A the local ring Ap is a DVR.

(ii) The ring A is integrally closed and dimA ≤ 1.

Proof. If A is a field then (i) and (ii) both hold, so let us assume that A is not a field, and
put K := FracA. We first show that (i) implies (ii). Recall that dimA is the supremum
of the length of all chains of prime ideals. It follows from Theorem 2.2 that every chain
of prime ideals (0) ( p1 ( · · · ( pn extends to a corresponding chain in Apn of the same
length; conversely, every chain in Ap contracts to a chain in A of the same length. Thus

dimA = sup{dimAp : p ∈ SpecA} = 1,

since every Ap is either a DVR (p 6= (0)), in which case dimAp = 1, or a field (p = (0)), in
which case dimAp = 0. Any a ∈ K that is integral over A is integral over every Ap (since
they all contain A), and the Ap are integrally closed. So a ∈

⋂
pAp = A, and therefore A is

integrally closed, which shows (ii).
To show that (ii) implies (i), we first show that the following properties are all inherited

by localizations of a ring: (1) no zero divisors, (2) noetherian, (3) dimension at most one,
(4) integrally closed. (1) is obvious, (2) was noted in Remark 2.3, and (3) follows from the
fact that every chain of prime ideals in Ap extends to a chain of prime ideals in A of the
same length, so dimAp ≤ dimA. To show (4), suppose x ∈ K is integral over Ap. Then

xn +
an−1
sn−1

xn−1 + · · ·+ a1
s1
x+

a0
s0

= 0

for some a0, . . . , an−1 ∈ A and s0, . . . , sn−1 ∈ A − p. Multiplying both sides by sn, where
s = s0 · · · sn−1 ∈ S, shows that sx is integral over A, hence an element of A, since A is
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integrally closed. But then sx/s = x is an element of Ap, so Ap is integrally closed as
claimed.

Thus (ii) implies that every Ap is an integrally closed noetherian local domain of dimen-
sion at most 1, and for p 6= (0) we must have dimAp = 1. Thus for every nonzero prime
ideal p, the localization Ap is an integrally closed noetherian local domain of dimension 1,
and therefore a DVR, by Theorem 1.14.

Definition 2.11. A noetherian domain satisfying either of the equivalent properties of
Proposition 2.10 is called a Dedekind domain.

Corollary 2.12. Every PID is a Dedekind domain. In particular, Z is a Dedekind domain,
as is k[x] for any field k.

Remark 2.13. Every PID is both a UFD and a Dedekind domain. Not every UFD is a
Dedekind domain (consider k[x, y], for any field k), and not every Dedekind domain is a
UFD (consider Z[

√
−13], in which (1 +

√
−13)(1 −

√
−13) = 2 · 7 = 14). However (as we

shall see), every ring that is both a UFD and a Dedekind domain is a PID.

We will see in later lectures that the ring of integers of a number field is always a
Dedekind domain. More generally, we will prove that if A is a Dedekind domain and L
is a finite separable extension of its fraction field, then the integral closure of A in L is a
Dedekind domain. For global function fields K, the analog of the ring of integers is the
integral closure of Fq[t] in K, which is also a Dedekind domain (for a suitable choice of t).

Remark 2.14. Unlike Q, not every finite extension of Fq(t) is separable. But every finite
extension K of Fq(t) contains a subfield isomorphic to Fq(t) over which it is separable;
one can always pick a separating element s ∈ K that is transcendental over Fq such that
K/Fq(s) is separable. More generally, by a theorem of Schmidt, every finitely generated
extension of a perfect field k is separably generated, meaning that it is a separable algebraic
extension of a purely transcendental extension of k; see [3, Thm. 7.20] for a proof.
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