19 The Kronecker-Weber theorem

As you proved in Problem Set 4, for each integer m > 1 the cyclotomic extension $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ is an abelian extension with Galois group $G := \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \simeq (\mathbb{Z}/m\mathbb{Z})^{\times}$. If K is a subfield of $\mathbb{Q}(\zeta_m)$, then the subgroup H of G fixing K is necessarily normal (since G is abelian), thus K/\mathbb{Q} is Galois, with $\operatorname{Gal}(K/\mathbb{Q}) \simeq G/H$, which we note is also abelian. We thus have a simple recipe for constructing finite abelian extensions of \mathbb{Q} : pick $m \geq 1$ and take any subfield of $\mathbb{Q}(\zeta_m)$.

Remarkably, every finite abelian extension of \mathbb{Q} can be constructed in this way. This is the *Kronecker-Weber Theorem*, which was first stated by Kronecker [2] in 1853. Kronecker proved it for extensions of odd degree and Weber published a proof 1886 [5] that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [3]), but in any case an alternative proof was given a few years later by Hilbert [1].

The proof of the Kronecker-Weber theorem we present here is adapted from [4, Ch. 14]

19.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 19.1. Every finite abelian extension of \mathbb{Q} lies in a cyclotomic field $\mathbb{Q}(\zeta_m)$.

There is also a local version.

Theorem 19.2. Every finite abelian extension of \mathbb{Q}_p lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

In fact, the local and global versions are equivalent.

Proposition 19.3. The global Kronecker-Weber theorem holds if and only if the local Kronecker-Weber theorem holds.

Proof. If \hat{K}/\mathbb{Q}_p is a finite abelian extension of local fields, then, by Corollary 11.3, there is a corresponding Galois extension K/\mathbb{Q} of global fields such that \hat{K} is the completion of Kwith respect to a \mathfrak{p} -adic absolute value extending the p-adic absolute value on \mathbb{Q} . The Galois group $\operatorname{Gal}(K/\mathbb{Q}) \simeq \operatorname{Gal}(\hat{K}/\mathbb{Q}_p)$ is abelian, so the global Kronecker-Weber theorem implies that $K \subseteq \mathbb{Q}(\zeta_m)$ for some integer m > 1. Let \hat{L} be the completion of $\mathbb{Q}(\zeta_m)$ at prime $\mathfrak{q}|\mathfrak{p}$. Then \hat{L} contains $\mathbb{Q}_p(\zeta_m)$, and since $\mathbb{Q}_p(\zeta_m)$ is a complete field containing $\mathbb{Q}(\zeta_m)$ the two fields must be equal. Thus $\hat{K} \subseteq \hat{L} \subseteq \mathbb{Q}_p(\zeta_m)$, so the local Kronecker-Weber theorem holds.

Now let K/\mathbb{Q} be a finite abelian extension of global fields. For each ramified prime p of \mathbb{Q} , pick a prime $\mathfrak{p}|p$ and let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} . The extension $K_{\mathfrak{p}}/\mathbb{Q}_p$ is finite abelian (its Galois group is isomorphic to a subgroup of $\operatorname{Gal}(K/\mathbb{Q})$, by part (6) of Theorem 11.4), and the local Kronecker-Weber theorem implies $K_{\mathfrak{p}} \subseteq \mathbb{Q}_p(\zeta_{m_p})$ for some integer $m_p \geq 1$. Now let $e_p = v_p(m_p)$ and define $m := \prod_p p^{e_p}$ (this is a finite product, since it ranges over ramified primes).

Claim: $K(\zeta_m) = \mathbb{Q}(\zeta_m)$ (and in particular, $K \subseteq \mathbb{Q}(\zeta_m)$).

Proof of claim: Let $L = K(\zeta_m)$. Then L is Galois (it is the splitting field over K of the cyclotomic polynomial $\Phi_m(x)$), and it is abelian since its Galois group is isomorphic to a subgroup of $\operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ (because $L = K \cdot \mathbb{Q}(\zeta_m)$). Let \mathfrak{q} be a prime of L lying above one of our chosen $\mathfrak{p}|p$; then $\mathfrak{q}|p$ and the completion $L_{\mathfrak{q}}$ of L at \mathfrak{q} is a finite abelian extension of \mathbb{Q}_p . Let F be the maximal unramified extension of \mathbb{Q}_p in $L_{\mathfrak{q}}$. Then $L_{\mathfrak{q}}/F$ is totally ramified, so its Galois group is isomorphic to the inertia group $I_p := I_{\mathfrak{q}}$. The field F

contains roots of unity ζ_n for all n|m not divisible by p (because the extensions $\mathbb{Q}_p(\zeta_n)$ are all unramified and F is maximal), so $L_{\mathfrak{q}} = F(\zeta_m) = F(\zeta_{p^{e_p}})$. Note that $F \cap \mathbb{Q}(\zeta_{p^{e_p}}) = \mathbb{Q}_p$, since the extension $\mathbb{Q}_p(\zeta_{p^{e_p}})/\mathbb{Q}_p$ must be ramified if its nontrivial, and therefore

$$I_p \simeq \operatorname{Gal}(L/F) \simeq \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{e_p}})) \simeq (\mathbb{Z}/p^{e_p}\mathbb{Z})^{\times}$$

Now let I be the subgroup of $\operatorname{Gal}(L/\mathbb{Q})$ generated by the inertia groups I_p for p|m. Then

$$#I \le \prod_p #I_p = \prod_p \phi(p^{e_p}) = \phi(m) = [\mathbb{Q}(\zeta_m) : \mathbb{Q}].$$

The fixed field of I is an unramified extension of \mathbb{Q} , hence trivial (by Corollary 13.23). Therefore $I = \text{Gal}(L/\mathbb{Q})$ and

$$[L:\mathbb{Q}] = \#I \le [\mathbb{Q}(\zeta_m):\mathbb{Q}],$$

so $K(\zeta_m) = L = \mathbb{Q}(\zeta_m)$ and the global Kronecker-Weber theorem holds for $K \subseteq \mathbb{Q}(\zeta_m)$. \Box

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic extensions of prime-power degree. Recall that if L_1 and L_2 are two Galois extensions of a field Kthen compositum $L = L_1L_2$ is Galois over K and

$$\operatorname{Gal}(L/K) \simeq \{(\sigma_1, \sigma_2) : \sigma_1|_{L_1 \cap L_2} = \sigma_2|_{L_1 \cap L_2}\} \subseteq \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K).$$

Note that the inclusion on the RHS is an equality if and only if $L_1 \cap L_2 = K$. If L/K is an abelian extension with $\operatorname{Gal}(L/K) \simeq H_1 \times H_2$ then by defining $L_2 := L^{H_1}$ and $L_1 := L^{H_2}$ we may write $L = L_1L_2$ with $L_1 \cap L_2 = K$, and we then have $\operatorname{Gal}(L_1/K) \simeq H_1$ and $\operatorname{Gal}(L_2/K) \simeq H_2$. It then follows from the structure theorem for finite abelian groups that we may decompose any finite abelian extension L/K into a compositum $L = L_1 \cdots L_n$ of (linearly disjoint) cyclic extensions L_i/K of prime-power degree. If each L_i lies in $K(\zeta_{m_i})$ for some integer $m_i \geq 1$, then if we put $m := m_1 \cdots m_n$ we have $L \subseteq \mathbb{Q}(\zeta_m)$.

To prove the local Kronecker-Weber theorem it suffices to consider cyclic ℓ -extensions K/\mathbb{Q}_p (cyclic extensions whose degree is a power of a prime ℓ). There two distinct cases: $\ell = p$ and $\ell \neq p$. We consider the easier case $\ell \neq p$ first.

19.2 The Kronecker-Weber theorem for cyclic ℓ -extensions of \mathbb{Q}_p with $\ell \neq p$

Proposition 19.4. Let K/\mathbb{Q}_p be a cyclic extension of degree ℓ^r for some prime $\ell \neq p$. Then $K \subseteq \mathbb{Q}_p(\zeta_m)$ for some $m \in \mathbb{Z}_{\geq 1}$.

Proof. Let F be the maximal unramified extension of \mathbb{Q}_p in K; then F is cyclotomic, by Corollary 10.5, so let $F = \mathbb{Q}_p(\zeta_n)$. The extension K/F is totally ramified, and it must be tamely ramified, since the ramification index is necessarily a power of ℓ and therefore not divisible by p. By Theorem 10.23, we have $K = F(\pi^{1/e})$ for some uniformizer π of the discrete valuation ring \mathcal{O}_F , with e = [K : F]. We may assume that $\pi = -pu$ for some $u \in \mathcal{O}_F^{\times}$, since F/\mathbb{Q}_p is unramified: if $\mathfrak{q}|p$ is the maximal ideal of \mathcal{O}_F then the valuation $v_{\mathfrak{q}}$ extends v_p with index $e_{\mathfrak{q}} = 1$ (by Theorem 5.11), so $v_{\mathfrak{q}}(-pu) = v_p(-pu) = 1$. The field $K = F(\pi^{1/e})$ then lies in the compositum of $F((-p)^{1/e})$ and $F(u^{1/e})$, and we will show that both of these fields lie in a cyclotomic extension of \mathbb{Q}_p . The extension $F(u^{1/e})/F$ is unramified, since $p \not\mid e$ and u is a unit (the discriminant of $x^e - u$ is not divisible by p), thus $F(u^{1/e})/\mathbb{Q}_p$ is unramified and therefore cyclotomic, by Corollary 10.5, so let $F(u^{1/e}) = \mathbb{Q}_p(\zeta_k)$ for some integer $k \ge 1$. The field $K(u^{1/e}) = K \cdot \mathbb{Q}_p(\zeta_k)$ is a compositum of abelian extensions, so $K(u^{1/e})/\mathbb{Q}_p$ is abelian, and it contains the subextension $\mathbb{Q}_p((-p)^{1/e})/\mathbb{Q}_p$, which must be Galois (since it lies in an abelian extension) and totally ramified (by Theorem 10.18, since it is an Eisenstein extension). The field $\mathbb{Q}_p((-p)^{1/e})$ contains ζ_e (take ratios of roots of $x^e + p$) and is totally ramified (since it is Eisenstein), but $\mathbb{Q}_p(\zeta_e)/\mathbb{Q}_p$ is unramified (since $p \not\mid e$), so we must have $\mathbb{Q}_p(\zeta_e) = \mathbb{Q}_p$. Therefore e|(p-1), and by Lemma 19.5 below we have

$$\mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p),$$

It follows that $F((-p)^{1/e}) = F \cdot \mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p(\zeta_n) \cdot \mathbb{Q}_p(\zeta_p)$. If we now put m = npk, the cyclotomic field $\mathbb{Q}_p(\zeta_m)$ contains both $F(u^{1/e})$ and $F((-p)^{1/e})$, and therefore K. \Box

Lemma 19.5. For any prime p we have $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$.

Proof. Let $\alpha = (-p)^{1/(p-1)}$. Then α is a root of the Eisenstein polynomial $x^{p-1} + p$, so the extension $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\alpha)$ is totally ramified of degree p-1, and α is a uniformizer (by Proposition 10.17 and Theorem 10.18). Let $\pi = \zeta_p - 1$. The minimal polynomial of π is

$$f(x) := \frac{(x+1)^p - 1}{x} = x^{p-1} + px^{p-2} + \dots + p,$$

which is Eisenstein, so $\mathbb{Q}_p(\pi) = \mathbb{Q}_p(\zeta_p)$ is also totally ramified of degree p-1, and π is a uniformizer. We have $u := -\pi^{p-1}/p \equiv 1 \mod \pi$, so u is a unit in the ring of integers of $\mathbb{Q}_p(\zeta_p)$. If we now put $g(x) = x^{p-1} - u$ then $g(1) \equiv 0 \mod \pi$ and $g'(1) = p - 1 \not\equiv 0 \mod \pi$, so by Hensel's Lemma 9.13 we can lift 1 to a root β of g(x) in $\mathbb{Q}_p(\zeta_p)$.

We then have $p\beta^{p-1} = pu = -\pi^{p-1}$, so $(\pi/\beta)^{p-1} + p = 0$, and therefore $\pi/\beta \in \mathbb{Q}_p(\zeta_p)$ is a root of the minimal polynomial of α . Since $\mathbb{Q}_p(\zeta_p)$ is Galois, this implies that $\alpha \in \mathbb{Q}_p(\zeta_p)$, and since $\mathbb{Q}_p(\alpha)$ and $\mathbb{Q}_p(\zeta_p)$ both have degree p-1, the two fields must be equal. \Box

To complete the proof of the local Kronecker-Weber theorem, we need to address the case $\ell = p$, that is, we need to show that every cyclic *p*-extension of \mathbb{Q}_p lies in a cyclotomic field. Here we need to deal with wild ramification, which complicates matters. We first recall a bit of the theory of Kummer extensions.

19.3 A little Kummer theory

Let K be a field, let $n \ge 1$ be prime to the characteristic of K, and assume K contains a primitive nth root of unity ζ_n . If L/K is an extension of the form $L = K(\sqrt[n]{a})$, then L is the splitting field of $f(x) = x^n - a$ over K (the roots $\zeta_n^i \alpha$ of f(x) all lie in L), hence Galois; here $\sqrt[n]{a}$ denotes a root of $x^n - a$, but since L contains all of them, it makes no difference which one we pick. The extension L/K is cyclic, since we have an injective homomorphism

$$\operatorname{Gal}(L/K) \hookrightarrow \langle \zeta_n \rangle \simeq \mathbb{Z}/n\mathbb{Z}$$
$$\sigma \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}},$$

which is an isomorphism whenever $x^n - a$ is irreducible.

Kummer's key observation is that the converse holds.

Lemma 19.6. Let K be a field, let $n \ge 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. If L/K is a cyclic extension of degree n then $L = K(\sqrt[n]{a})$ for some $a \in K$.

Proof. Let L/K be a cyclic extension of degree n with $\operatorname{Gal}(L/K) = \langle \sigma \rangle$. Applying Hilbert's Theorem 90 (Lemma 19.7 below) to ζ_n with $\operatorname{N}_{L/K}(\zeta_n) = \zeta_n^n = 1$, we obtain an element $\alpha \in L$ for which $\sigma(\alpha) = \zeta_n \alpha$. We have

$$\sigma(\alpha^n) = \sigma(\alpha)^n = (\zeta_n \alpha)^n = \alpha^n,$$

thus $a = \alpha^n$ is invariant under the action of $\langle \sigma \rangle = \operatorname{Gal}(L/K)$ and therefore lies in K. Moreover, the orbit $\{\alpha, \zeta_n \alpha, \ldots, \zeta_n^{n-1} \alpha\}$ of α under the action of $\operatorname{Gal}(L/K)$ has order n, so $L = K(\alpha) = K(\sqrt[n]{a})$ as desired.

Lemma 19.7 (Hilbert Theorem 90). Let L/K be a cyclic extension with Galois group $\langle \sigma \rangle$. For every $u \in L$ of norm $N_{L/K}(u) = 1$ there exists $z \in L^{\times}$ for which $\sigma(z) = uz$.

Proof. By the normal basis theorem, we can pick $b \in L$ so that $\{\sigma^i(b)\}$ is a basis for $L \simeq K^n$ as a K-vector space. If we represent elements of L in this basis, σ acts as a cyclic permutation $(x_1, \ldots, x_n) \mapsto (x_n, x_1, \ldots, x_{n-1})$. The map $f(x) = \sigma(ux)$ is a K-linear transformation of L, and we claim that 1 is an eigenvalue of f, a property that is invariant under base change. If we base-change to L, our n-dimensional K-vector space $L \simeq K^n$ becomes an n-dimensional L-vector space $L \otimes_K L \simeq L^n$, and the nonzero vector

$$(1, \sigma(u), \sigma(u)\sigma^2(u), \ldots, \sigma(u)\sigma^2(u)\sigma^3(u)\cdots\sigma^{n-1}(u)) \in L^n$$

is fixed by f (because $\sigma(u)\sigma^2(u)\cdots\sigma^{n-1}(u) = N_{L/K}(u)u^{-1} = u^{-1}$). Thus 1 is an eigenvalue of f, so there is a nonzero $z \in L \simeq K^n$ that is fixed by f.

Definition 19.8. Let K be a field with algebraic closure \overline{K} , let $n \ge 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. The Kummer pairing is the map

$$\langle \cdot, \cdot \rangle \colon \operatorname{Gal}(\overline{K}/K) \times K^{\times} \to \langle \zeta_n \rangle \\ \langle \sigma, a \rangle \mapsto \sigma(\alpha) / \alpha$$

where α is any *n*th root of a in $\in \overline{K}^{\times}$; if β is another *n*th root of a, then $\alpha/\beta \in K$ is fixed by σ (since K contains all *n*th roots of 1) and $\sigma(\beta)/\beta = \sigma(\beta)/\beta \cdot \sigma(\alpha/\beta)/(\alpha/\beta) = \sigma(\alpha)/\alpha$, so the value of $\langle \sigma, a \rangle$ does not depend on the choice of α . Note that if $a \in K^{\times n}$ then $\langle \sigma, a \rangle = 1$ for all $\sigma \in \text{Gal}(\overline{K}, K)$, so the Kummer pairing depends only on the image of a in $K^{\times}/K^{\times n}$; thus we may also view it as a pairing on $\text{Gal}(\overline{K}, K) \times K^{\times}/K^{\times n}$.

Theorem 19.9. Let K be a field, let $n \ge 1$ be prime to the characteristic of K with $\zeta_n \in K$. The Kummer pairing induces an isomorphism

$$\Phi \colon K^{\times}/K^{\times n} \to \operatorname{Hom}(\operatorname{Gal}(K/K), \langle \zeta_n \rangle)$$
$$a \mapsto (\sigma \mapsto \langle \sigma, a \rangle).$$

Proof. For each $a \in K^{\times} - K^{\times n}$, if we pick an *n*th root $\alpha \in \overline{K}$ of *a* then the extension $K(\alpha)/K$ will be non-trivial and some $\sigma \in \text{Gal}(\overline{K}/K)$ must act nontrivially on α . For this σ we have $\langle \sigma, a \rangle \neq 1$, so the homomorphism $\Phi(a)$ is nontrivial and $a \notin \ker \Phi$. This shows that Φ is injective.

To show surjectivity, let $f: \operatorname{Gal}(\overline{K}/K) \to \langle \zeta_n \rangle$ be a homomorphism, let $d = \# \operatorname{im} f$, let $H = \ker f$, and let $L = \overline{K}^H$. Then $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, so L/K is a cyclic extension of degree d, and Lemma 19.6 implies that $L = K(\sqrt[d]{a})$ for some $a \in K$. If we put e = n/d and consider the homomorphisms $\Phi(a^{me})$ for $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, these homomorphisms are all distinct (because the a^{me} are distinct modulo $K^{\times n}$ and Φ is injective) and they all have the same kernel and image as f (their kernels have the same fixed field L because L contains all the dth roots of a). There are $\#(\mathbb{Z}/d\mathbb{Z})^{\times} = \#\operatorname{Aut}(\mathbb{Z}/d\mathbb{Z})$ distinct isomorphisms $\operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, one of which corresponds to f, and each corresponds to one of the $\Phi(a^{me})$. It follows that $f = \Phi(a^{me})$ for some $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, so Φ is surjective. \Box

If we now consider any finite subgroup A of $K^{\times}/K^{\times n}$, we can choose $a_1, \ldots, a_r \in K^{\times}$ so that the images \bar{a}_i of the a_i in $K^{\times}/K^{\times n}$ form a basis for the abelian group A; this means

$$A = \langle \bar{a}_1 \rangle \times \cdots \times \langle \bar{a}_r \rangle \simeq \mathbb{Z}/n_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/n_r \mathbb{Z},$$

where $n_i|n$ is the order of a_i in A. For each a_i , the fixed field of the kernel of $\Phi(a_i)$ is a cyclic extension of K isomorphic to $L_i := K(\sqrt[n_i]{a_i})$, as in the proof of Theorem 19.9. The fields L_i are linearly disjoint over K (because the a_i correspond to independent generators of A), and their compositum $L = K(\sqrt[n_i]{a_1}, \dots, \sqrt[n_i]{a_r})$ has Galois group $\operatorname{Gal}(L/K) \simeq A$, an abelian group whose exponent divides n; such fields L are called n-Kummer extensions of K (assuming $\zeta_n \in K$).

Conversely, given an *n*-Kummer extension L/K, we can iteratively apply Lemma 19.6 to put L in the form $L = K(\sqrt[n_1]{a_1}, \ldots, \sqrt[n_r]{a_r})$ with each $a_i \in K^{\times}$ and $n_i|n$, and the images of the a_i in $K^{\times}/K^{\times n}$ generate a subgroup A corresponding to L. We thus have a 1-to-1 correspondence between finite subgroups of $K^{\times}/K^{\times n}$ and (finite) *n*-Kummer extensions of K (this correspondence also extends to infinite subgroups provided we put a suitable topology on the groups).

So far we have been assuming that K contains all the *n*th roots of unity. To help handle situations where this is not necessarily the case, we rely on the following lemma, in which we restrict to the case that n is a prime (or an odd prime power) so that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic (the definition of ω in the statement of the lemma does not make sense otherwise).

Lemma 19.10. Let n be a prime (or an odd prime power), let F be a field of characteristic prime to n, let $K = F(\zeta_n)$, and let $L = K(\sqrt[n]{a})$ for some $a \in K^{\times}$. Define the homomorphism $\omega: \operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ by $\zeta_n^{\omega(\sigma)} = \sigma(\zeta_n)$. If L/F is abelian then $\sigma(a)/a^{\omega(\sigma)} \in K^{\times n}$ for all $\sigma \in \operatorname{Gal}(K/F)$.

Proof. Let $G = \operatorname{Gal}(L/F)$, let $H = \operatorname{Gal}(L/K) \subseteq G$, and let A be the subgroup of $K^{\times}/K^{\times n}$ generated by a. The Kummer pairing induces a bilinear pairing $H \times A \to \langle \zeta_n \rangle$ that is compatible with the action of $\operatorname{Gal}(K/F) \simeq G/H$. In particular, we have

$$\langle h, a^{\omega(\sigma)} \rangle = \langle h, a \rangle^{\omega(\sigma)} = \sigma(\langle h, a \rangle) = \langle \sigma(h), \sigma(a) \rangle = \langle h, \sigma(a) \rangle$$

for all $\sigma \in \text{Gal}(K/F)$ and $h \in H$; the Galois action on H is by conjugation (lift σ to G and conjugate there), but it is trivial because G is abelian. The pairing is nondegenerate (because Φ is injective), so we must have $a^{\omega(\sigma)} \equiv \sigma(a) \mod K^{\times n}$; the lemma follows. \Box

19.4 The Kronecker-Weber theorem for cyclic *p*-extensions of \mathbb{Q}_p , for p > 2

We are now ready to prove the local Kronecker-Weber theorem in the case $\ell = p$. We first consider the case $p \neq 2$.

Theorem 19.11. Let $p \neq 2$ be prime and let K/\mathbb{Q}_p be a cyclic extension of degree p^r . Then $K \subseteq \mathbb{Q}_p(\zeta_m)$ for some $m \ge 1$.

Proof. There are two obvious candidates for K, namely, the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, which by Corollary 10.5 is an unramified extension of degree p^r , and the index p-1 subfield of the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{r+1}})$, which is a totally ramified extension of degree p^r (the p^{r+1} -cyclotomic polynomial has degree $p^r(p-1)$ and is irreducible over \mathbb{Q}_p). If K is contained in the compositum of these two fields then $K \subseteq \mathbb{Q}_p(\zeta_m)$, where $m := (p^{p^r} - 1)(p^{r+1})$ and the theorem holds. Otherwise, the field $K(\zeta_m)$ is a Galois extension of \mathbb{Q}_p with

$$\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p) \simeq \mathbb{Z}/p^r \mathbb{Z} \times \mathbb{Z}/p^r \mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^s \mathbb{Z},$$

for some s > 0; the first factor comes from the Galois group of $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, the second two factors come from the Galois group of $\mathbb{Q}_p(\zeta_{p^{r+1}})$ (note that $\mathbb{Q}_p(\zeta_{p^{r+1}}) \cap \mathbb{Q}_p(\zeta_{p^{p^r}-1}) = \mathbb{Q}_p)$, and the last factor comes from the fact that we are assuming $K \not\subseteq \mathbb{Q}_p(\zeta_m)$, so $\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p(\zeta_m))$ is nontrivial and must have order p^s for some $0 < s \leq r$.

It follows that the abelian group $\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p)$ has a quotient isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, and the subfield of $K(\zeta_m)$ corresponding to this quotient is an abelian extension of \mathbb{Q}_p with Galois group isomorphic $(\mathbb{Z}/p\mathbb{Z})^3$. But by Lemma 19.12 below, no such field exists. \Box

Lemma 19.12. For p > 2 no extension of \mathbb{Q}_p has Galois group isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$.

Proof. Suppose for the sake of contradiction that K is an extension of \mathbb{Q}_p with Galois group $\operatorname{Gal}(K/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^3$. Then K/\mathbb{Q}_p is linearly disjoint from $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$, since the order of $G := \operatorname{Gal}(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$ is not divisible by p, and $\operatorname{Gal}(K(\zeta_p)/\mathbb{Q}_p(\zeta_p)) \simeq (\mathbb{Z}/p\mathbb{Z})^3$ is a p-Kummer extension. There is thus a subgroup $A \subseteq \mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, for which $K(\zeta_p) = \mathbb{Q}_p(\zeta_p, A^{1/p})$, where $A^{1/p} := \{a^{1/p} : a \in A\}$ (here we identify elements of A by representatives in $\mathbb{Q}_p(\zeta_p)^{\times}$ that are determined only up to pth powers).

For any $a \in A$, the extension $\mathbb{Q}_p(\zeta_p, \sqrt[p]{a})/\mathbb{Q}_p$ is abelian, so by Lemma 19.10, we have

$$\sigma(a)/a^{\omega(\sigma)} \in \mathbb{Q}_p(\zeta_p)^{\times p} \tag{1}$$

for all $\sigma \in G$, where $\omega \colon G \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^{\times}$ is the isomorphism defined by $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$.

We may take $\pi = \zeta_p - 1$ as a uniformizer for $\mathbb{Q}_p(\zeta_p)$, which we note is a totally ramified extension of \mathbb{Q}_p of degree p-1 with residue field $\mathbb{Z}/p\mathbb{Z}$ (see the proof of Lemma 19.5; note that a totally ramified extension must have residue field degree 1). For each $a \in A$ we have

$$v_{\pi}(a) = v_{\pi}(\sigma(a)) \equiv \omega(\sigma)v_{\pi}(a) \mod p,$$

thus $(1 - \omega(\sigma))v_{\pi}(a) \equiv 0 \mod p$, for all $\sigma \in G$, hence for all $\omega(\sigma) \in \omega(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$; since p > 2, this implies $v_{\pi}(a) \equiv 0 \mod p$. Now a is determined only up to pth-powers, so after multiplying by $\pi^{-v_{\pi}(a)}$ we may assume $v_{\pi}(a) = 0$, and after multiplying by a suitable power of $\zeta_{p-1}^p = \zeta_{p-1}$, we may assume $a \equiv 1 \mod \pi$, since the image of ζ_{p-1} generates the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of the residue field.

We may thus assume that $A \subseteq U_1/U_1^p$, where $U_1 := \{u \equiv 1 \mod \pi\}$. Each $u \in U_1$ can be written as a power series in π with integer coefficients in [0, p-1] and constant coefficient 1.

We have $\zeta_p \in U_1$, since $\zeta_p = 1 + \pi$, and $\zeta_p^b = 1 + b\pi + O(\pi^2)$ for $b \in [0, p-1]$.¹ Thus for any $a \in A \subseteq U_1$, we can choose b so that for some $c \in \mathbb{Z}$ and $e \in \mathbb{Z}_{>2}$ we have

$$a = \zeta_p^b (1 + c\pi^e + O(\pi^{e+1}))$$

¹The expression $O(\pi^n)$ denotes a power series in π that is divisible by π^n .

For $\sigma \in G$ we have

$$\frac{\sigma(\pi)}{\pi} = \frac{\sigma(\zeta_p - 1)}{\zeta_p - 1} = \frac{\zeta_p^{\omega(\sigma)} - 1}{\zeta_p - 1} = \zeta_p^{\omega(\sigma) - 1} + \dots + \zeta_p + 1 \equiv \omega(\sigma) \mod \pi,$$

since each term in the sum is congruent to 1 modulo $\pi = (\zeta_p - 1)$; here we are representing $\omega(\sigma) \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ as an integer in [1, p-1]. Thus $\sigma(\pi) \equiv \omega(\sigma)\pi \mod \pi$ and

$$\sigma(a) = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)^e \pi^e + O(\pi^{e+1})).$$

We also have

$$a^{\omega(\sigma)} = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)\pi^e + O(\pi^{e+1})).$$

As we proved for a above, any $u \in U_1$ can be written as $u = \zeta_p^b u_1$ with $u_1 \equiv 1 \mod \pi^2$. Each interior term in the binomial expansion of $u_1^p = (1 + O(\pi^2))^p$ other than leading 1 is a multiple of $p\pi^2$ and therefore $O(\pi^{p+1})$; if follows that $u^p = u_1^p \equiv 1 \mod \pi^{p+1}$. Thus every element of U_1^p is congruent to 1 modulo π^{p+1} , and as you will show on the problem set, the converse holds, that is $U_1^p = \{u \equiv 1 \mod \pi^{p+1}\}$. We know from (1) that $\sigma(a)/a^{\omega(\sigma)} \in U_1^p$, so $\sigma(a) = a^{\omega(\sigma)}(1 + O(\pi^{p+1}))$ and therefore

$$\sigma(a) \equiv a^{\omega(\sigma)} \bmod \pi^{p+1}.$$

For $e \leq p$ this is possible only if $\omega(\sigma) = \omega(\sigma)^e$ for every $\sigma \in G$, equivalently, for every $\omega(\sigma) \in \sigma(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$, but then $e \equiv 1 \mod (p-1)$ and we must have $e \geq p$, since $e \geq 2$.

We have shown that every $a \in A$ is represented by an element $\zeta_p^b(1+c\pi^p+O(\pi^{p+1})) \in U_1$ with $b, c \in \mathbb{Z}$, and therefore lies in the subgroup of U_1/U_1^p generated by ζ_p and $(1 + \pi^p)$, which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a subgroup of $(\mathbb{Z}/p\mathbb{Z})^2$. But this contradicts $A \simeq (\mathbb{Z}/p\mathbb{Z})^3$.

For p = 2 there is an extension of \mathbb{Q}_2 with Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$, the cyclotomic field $\mathbb{Q}_2(\zeta_{24}) = \mathbb{Q}_2(\zeta_3) \cdot \mathbb{Q}_2(\zeta_8)$. More generally, the unramified cyclotomic field $\mathbb{Q}_2(\zeta_{2^{2^r}-1})$ has Galois group $\mathbb{Z}/2^r\mathbb{Z}$, the totally ramified cyclotomic field $\mathbb{Q}_2(\zeta_{2^{r+2}})$ has Galois group isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2^r\mathbb{Z}$, and their compositum L has Galois group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2^r\mathbb{Z})^2$. If K/\mathbb{Q}_2 is a cyclic extension of degree 2^r that does not lie in L, then one can show that $\operatorname{Gal}(K \cdot L/\mathbb{Q}_2)$ admits a quotient isomorphic to either $(\mathbb{Z}/2\mathbb{Z})^4$, or $(\mathbb{Z}/4\mathbb{Z})^3$, and therefore there exists an extension of \mathbb{Q}_2 whose Galois group is isomorphic to one of these two groups. The proof then proceeds by showing that no such extensions exists; we defer the details to the problem set.

References

- [1] David Hilbert, Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klass (1896), 29–39.
- [2] Leopold Kronecker, Uber die algebraisch auflösbaren Gleichungen I (1853), in "Leopold Kronecker's Werke, Part 4" (ed. K. Hensel), AMS Chelsea Publishing, 1968.
- [3] Olaf Neumann, Two proofs of the Kronecker-Weber theorem "according to Kronecker, and Weber", J. Reine Angew. Math. 323 (1981),105–126.

- [4] Lawrence C. Washington, *Introduction to cyclotomic fields*, 2nd edition, Springer, 1997.
- [5] Heinrich M. Weber, *Theorie der Abel'schen Zahlkörper*, Acta Mathematica 8 (1886), 193–263.