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18 The analytic class number formula

The following theorem is usually attributed to Dirichlet, although he originally proved it
only for quadratic fields. The formula for the limit in the theorem below was proved by
Dedekind, and analytic continuation was proved by Landau. Hecke later showed that, like
the Riemann zeta function, the Dedekind zeta function has an analytic continuation to all
of C and satisfies a functional equation, but we won’t prove these results here.

Theorem (Analytic Class Number Formula). Let K be a number field of degree n with
r real and s complex places. The Dedekind zeta function ζK(z) extends to a meromorphic
function on Re(z) > 1− 1

n that is holomorphic except for a simple pole at z = 1 with residue

lim
z→1+

(z − 1)ζK(z) =
2r(2π)shKRK
wK |DK |1/2

,

where hK := # clOK is the class number, RK is the regulator, wK := #(O×K)tors is the
number of roots of unity in K, and DK := discOK is the discriminant.

Recall that the regulator RK is the covolume of the image of O×K in the trace-zero
hyperplane Rr+s0 under the Log map; see Definition 14.10.

Example 18.1. For K = Q we already know that

ζQ(z) = ζ(z) =
1

z − 1
+ φ(z)

where φ(z) is holomorphic on Re z > 1− 1
1 = 0. The residue of the simple pole at z = 1 is

lim
z→1+

(z − 1)ζ(z) = 1 + (z − 1)φ(z) = 1.

In terms of the class number formula, we have r = 1, s = 0, hK = 1, RK = 1, wK = 2, and
DK = 1 (for the regulator, note that the covolume of a point in R0 is the determinant of a
0× 0 matrix, which is 1). Plugging these values into the theorem gives

lim
z→1+

(z − 1)ζK(z) =
21(2π)0 · 1 · 1

2 · |1|1/2
= 1,

as expected.

18.1 Cyclotomic zeta functions and Dirichlet L-series

Before proving the analytic class number formula, let’s use it to complete the proof of
Dirichlet’s theorem on primes in arithmetic progressions that we started in the previous
lecture. In order to establish the key claim that the Dirichlet L-series L(s, χ) does not
vanish at s = 1 when χ is non-principal, we are going to show that the Dedekind zeta
function for the mth cyclotomic field K = Q(ζm) can be written as a product of Dirichlet
L-series

ζK(s) =
∏
χ

L(s, χ),

where the product ranges over the primitive Dirichlet characters whose conductor divides m.
For the principal character of conductor 1 we have L(s, χ) = ζ(s) with a simple pole at s = 1,
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and since ζK(s) also has a simple pole at s = 1, this implies that none of the L(s, χ) with χ
non-principal can vanish at s = 1 (by Proposition 17.29, none of them has a pole at s = 1).

Let ζm be a primitive mth root of unity and let K = Q(ζm) be the mth cyclotomic field.
Recall that we have an isomorphism

ϕ : Gal(K/Q)
∼−→ (Z/mZ)×

that sends σ ∈ Gal(K/Q) to the unique a ∈ (Z/mZ)× for which σ(ζm) = ζam. For primes
p 6 | m, we have ϕ(σp) = p ∈ (Z/mZ)×, where σp ∈ Gal(K/Q) is the Frobenius element at p
(which is the Frobenius element at any prime p of Q(ζm) above p; these are all conjugate,
hence equal, because Gal(K/Q) is abelian).

Theorem 18.2. Let K = Q(ζm) be the mth cyclotomic field. Then

ζK(s) =
∏
χ

L(s, χ),

where χ ranges over the primitive Dirichlet characters of conductor dividing m.

Proof. On the LHS we have

ζK(s) =
∏
q

(
1−N(q)−s

)−1
=
∏
p

∏
q|p

(
(
1−N(p)−s

)−1
,

and on the RHS we have∏
χ

L(s, χ) =
∏
χ

∏
p

(
1− χ(p)p−s

)−1
=
∏
p

∏
χ

(
1− χ(p)p−s

)−1
.

It thus suffices to prove that the equality∏
q|p

(
1−N(q)−s

) ?
=
∏
χ

(
1− χ(p)p−s

)
holds for each prime p.

Since K/Q is Galois, for each prime p we have [K : Q] = φ(m) = epfpgp, where ep is
the ramification index, fp is the inertia degree, and gp is the number of distinct primes q|p.
On the LHS, ∏

q|p

(
1−N(q)−s

)
=
(

1− (pfp)−s
)gp

=
(

1− (p−s)fp
)gp

. (1)

On the RHS we can ignore factors with χ(p) = 0; these occur precisely when p divides
the conductor of χ (which never happens if p 6 | m is unramified). Let us write m = pkm′

with m′ not divisible by p. We may identify the set of primitive Dirichlet characters of
conductor dividing m′ with the character group of (Z/m′Z)×, via Lemma 17.25.

The field K ′ = Q(ζm′) is the maximal extension of Q in K unramified at p; it has degree
φ(m′) = φ(m)/ep = fpgp (because K ′/K is totally ramified at p with degree ep). Thus∏

χ

(
1− χ(p)p−s

)
=

∏
cond(χ)|m′

(
1− χ(p)p−s

)
=
∏
αfp=1

(
1− αp−s

)gp ,
since the map χ 7→ χ(p) defines a surjective homomorphism from the character group of
(Z/m′Z)× to the group of fpth roots of unity α, and the kernel of this map has cardinality
φ(m′)/fp = gp.
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Over C[T ] we have the identity

1− T f =
∏
α∈µfp

(1− αT ),

and substituting T = p−s yields∏
χ

(
1− χ(p)p−s

)
=
∏
αfp=1

(
1− αp−s

)gp =
(

1− (p−s)fp
)gp

,

which matches the expression in (1) for the LHS as desired.

Remark 18.3. Theorem 18.2 is sometimes stated in terms of the Dirichlet characters of
modulus m, rather than using the primitive Dirichlet characters of conductor dividing m.
Both forms of the theorem are equivalent, but using primitive characters as we have here
correctly accounts for the Euler factors at primes p|m, leading to a prettier formula and
a simpler proof. More generally, one can use Dirichlet characters to analyze ramification
in any abelian extension of Q (these are all subfields of cyclotomic fields, but need not be
cyclotomic), and for this purpose it is better to use primitive characters.

18.2 Non-vanishing of Dirichlet L-functions with non-principal character

We can now prove the key claim needed to complete our proof of Dirichlet’s theorem on
primes in arithmetic progressions.

Theorem 18.4. Let χ be any non-principal Dirichlet character. Then L(1, χ) 6= 0.

Proof. Let ψ be a non-principal Dirichlet character, say of modulus m. Then ψ is induced by
a non-trivial primitive Dirichlet character ψ̃ of conductor m̃ dividing m. The L-functions of
ψ and ψ̃ differ at only finitely many Euler factors (1−χ(p)p−s)−1 (corresponding to primes
p dividing m but not m̃), and these factors are all nonzero at s = 1 because p > 1. Thus
we may assume without loss of generality that ψ = ψ̃ is primitive.

We now consider the order of vanishing at s = 1 of both sides of the equality

ζK(s) =
∏
χ

L(s, χ),

given by Theorem 18.2, where the product ranges over primitive Dirichlet characters of
conductor dividing m. By the analytic class number formula (Theorem 18.13), the LHS has
a simple pole at s = 1, so the same must be true of the RHS. Thus

ords=1ζK(s) = ords=1

∏
χ

L(s, χ)

−1 = ords=1L(s,1)
∏
χ 6=1m

L(s, χ)

−1 = ords=1ζ(s)
∏
χ 6=1

L(s, χ)

−1 = −1 +
∑
χ 6=1

ords=1L(s, χ)
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Each χ 6= 1 in the sum is necessarily non-principal (since it is primitive), and we proved
in Proposition 17.29 that for non-principal χ the Dirichlet L-series L(s, χ) has an analytic
continuation to Re s > 0; in particular, it does not have a pole at s = 1, so ords=1L(s, χ) ≥ 0.
But then ∑

χ 6=1
ords=1L(s, χ) = 0

can only hold if every term in the sum is zero. So L(1, χ) 6= 0 for every non-trivial primitive
Dirichlet character χ of conductor dividing m, and in particular for ψ = ψ̃.

18.3 Preparation for proving the analytic class number formula

Recall that in §14.2 of Lecture 14 we defined the locally compact group

K×R :=
∏

real v|∞

R× ×
∏

complex v|∞

C×,

whose multiplication is defined component-wise, with the subspace topology inherited from
KR := K⊗QR ' Rn (note that Rr×Cs ' Rn as R-vector spaces, and even though they are
not isomorphic as R-algebras, multiplication is continuous, so we do get a locally compact
topological group). We have a natural embedding

K× ↪→ K×R
x 7→ (xv),

where v ranges over the r + s archimedean places of K; this allows us to view K× as a
subgroup of K×R that contains the nonzero elements of OK . We then defined the log map

Log : K×R → Rr+s

(xv) 7→ (log ‖xv‖v),

and proved that we have an exact sequence of abelian groups

0 −→ (O×K)tors −→ O×K
Log−→ ΛK → 0,

in which ΛK is a lattice in the trace-zero hyperplane Rr+s0 := {x ∈ Rr+s : T (x) = 0} (the
trace T (x) is just the sum of the coordinates of x). We then defined the regulator RK as the
covolume of ΛK in Rr+s0 (see Definition 14.10), where we endow Rr+s0 with the Euclidean
measure induced by any coordinate projection Rr+s → Rr+s−1.

18.3.1 Lipschitz parametrizability

To prove the analytic class number formula we need an asymptotic estimate of the number
of nonzero OK-ideals I with norm N(I) bounded by some real t that we will let tend to
infinity; this is needed to understand the behavior of ζK(z) =

∑
I N(I)−s as z → 1+. Our

strategy for doing so is to count points in the image of OK under the Log map that lie inside
a suitably chosen region S of Rr+s that we will than scale by t. In order to bound this count
as a function of t we need a condition on S that ensures that this count grows smoothly
with t; this is not guaranteed for arbitrary S, we need S to have a “reasonable” shape, one
that is not too convoluted. A sufficient condition for this is Lipschitz parametrizability.
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Definition 18.5. Let X and Y be metric spaces. A function f : X → Y is Lipschitz if
there exists c > 0 such that for all x1, x2 ∈ X

d(f(x1), f(x2)) ≤ cd(x1, x2).

Every Lipschitz function is continuous, in fact, uniformly continuous, but the converse
need not hold. For example, the function f(x) =

√
x on [0, 1] is uniformly continuous but

not Lipschitz, since |
√

1/n− 0|/|1/n− 0| =
√
n is unbounded as 1/n→ 0.

Definition 18.6. A set B ⊆ Rn is d-Lipschitz parametrizable if it is the union of the images
of a finite number of Lipschitz maps [0, 1]d → B.

Lemma 18.7. Let S ⊆ Rn be a set whose boundary ∂S := S − S0 is (n − 1)-Lipschitz
parametrizable. Then

#(tS ∩ Zn) = µ(S)tn +O(tn−1),

as t→∞, where µ is the usual Lebesgue measure on Rn.

Proof. We can partition Rn as the disjoint union of half-open cubes of the form

C(a1, . . . , an) = {(x1, . . . , xn) ∈ Rn : xi ∈ [ai, ai + 1)},

with a1, . . . , an ∈ Z. Let C be the set of all such half-open cubes C. For each t > 0 define

B0(t) := #{C ∈ C : C ⊆ tS},
B1(t) := #{C ∈ C : C ∩ tS}.

For every t > 0 we have
B0(t) ≤ #(tS ∩ Zn) ≤ B1(t).

We can bound B1(t)−B0(t) by noting that each C(a1, . . . , an) counted by this difference
has (a1, . . . , an) within a distance

√
n = O(1) of a point in ∂tS.

Let τ = btc. Let f1, . . . , fm be Lipschitz functions [0, 1]n−1 → ∂S whose images cover
∂S. There is an absolute constant c (independent of τ) such that every point in ∂S is within
a distance c/τ = O(1/t) of a point in the set

P =
{
fi

(a1
τ
, . . . ,

an−1
τ

)
: 1 ≤ i ≤ m, a1, . . . , an−1 ∈ [0, τ) ∩ Z

}
,

which has cardinality mτn−1 = O(tn−1). It follows that every point of ∂tS is within a
distance O(1) of one of the O(tn−1) points tP with P ∈ P. The number of integer lattice
points within a distance

√
n of a point in ∂tS is thus also O(tn−1), and therefore

B1(t)−B0(t) = O(tn−1).

We now note that B0(T ) ≤ µ(tS) ≤ B1(T ) and µ(tS) = tnµ(S); the lemma follows.

Corollary 18.8. Let Λ be a Lattice in Rn and let S ⊆ Rn be a set whose boundary is
(n− 1)-Lipschitz parametrizable. Then

#(tS ∩ Λ) =
µ(S)

covol(Λ)
tn +O(tn−1).

Proof. The case Λ ⊆ Zn is clear. If the corollary holds for sΛ, for some s > 0, then it also
holds for Λ, since tS ∩ sΛ = (t/s)S ∩ Λ.

For any lattice Λ, we can choose s > 0 so that sΛ is arbitrarily close to an integer lattice
(take s to be the LCM of the denominators of rational approximations of the coordinates
of a basis for Λ); the corollary follows.
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18.3.2 Counting algebraic integers of bounded norm

By Dirichlet’s unit theorem (Theorem 14.8), we can write

O×K = U × (O×K)tors,

where U ⊆ O×K is free of rank r + s − 1 (the subgroup U is not uniquely determined, but
let us fix a choice). In order to understand the behavior of the Dedekind zeta function

ζK(z) =
∑
I

N(I)−z

as z → 1+, we want to estimate the quantity

#{I : N(I) ≤ t},

where I ranges over nonzero ideals of OK , as t→∞.
As a first step in this direction, let us try to count the set

{nonzero principal ideals I ⊆ OK : N(I) ≤ t}.

Equivalently, we want to count

{α ∈ OK − {0} : |N(α)| ≤ t}/O×K ,

which is equivalent to (
K×R,≤t ∩ OK

)
/O×K ,

where we are viewing OK − {0} as a subset of K×R containing the subgroup O×K and

K×R,≤t := {x ∈ K×R : |N(x)| ≤ t}.

Recall that for x = (xv) ∈ K×R the norm map N: K×R → R× is defined by

N(x) :=
∏
v real

xv
∏

v complex

xvx̄v,

and satisfies T(Log(x)) = log |N(x)| for all x ∈ K×R . To simplify matters, let us replace O×K
with the free group U ; we then have a wK–to–1 map

(K×R,≤t ∩ OK)/U −→
(
K×R,≤t ∩ OK

)
/O×K .

If F is a fundamental region for K×R /U , it suffices to consider

F≤t ∩ OK ,

where F≤t := {x ∈ F : N(x) ≤ t}. Note that F is not compact, but F≤t is, and OK − {0}
is discrete as a subset of K×R , so F≤t ∩ OK is a finite set; we want to understand how its
cardinality grows as t→∞.

In order to explicitly construct F we define the map

σ : K×R � K×R,1

x 7→ x|N(x)|−1/n
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which rescales each x ∈ K×R so that it has norm 1. The image of K×R,1 under the Log map

is precisely the trace-zero hyperplane Rr+s0 in Rr+s, in which LogU = ΛK is a lattice. If we
pick a fundamental domain R for the lattice ΛK in Rr+s0 then

F := σ−1
(
Log−1(R)

)
is a fundamental region for K×R /U . Note that tF≤1 = F≤tn , so F≤t = t1/nF≤1.

Recall that the map Log : K×R → Rr+s satisfies

(x1, . . . , xr, z1 . . . , zs) 7→ (log |x1|, . . . , log |xr|, 2 log |z1|, . . . , 2 log |zs|),

where x1, . . . , xr ∈ R× and z1, . . . , zs ∈ C× and | | denotes the usual absolute value in R
and C. The kernel of the Log map is {±1}r ×U(1)s, where U(1) = {z : |z| = 1} is the unit
circle in C. We thus have a continuous isomorphism of locally compact groups

K×R = (R×)r × (C×)s
∼−→ Rr+s × {±1}r ×U(1)s, (2)

where the map to Rr+s is the Log map, the map to {±1}r is the vector of signs of the r
real components, and the map to U(1)s is the vector of radial projections to U(1) of the s
complex components.

The set F≤1 = F<1 consists of 2r connected components, one for each element of {±1}.
We can parametrize each of these component using n real parameters as follows:

• r + s− 1 parameters in [0, 1) that encode a point in R as an R-linear combination of
Log(ε1), . . . ,Log(εr+s−1), where ε1, . . . , εr+s−1 are a basis for U ;

• s parameters in [0, 1) that encode an element of U(1)s;

• a parameter in (0, 1] that encodes the nth-root of the norm.

These parameterizations define a continuously differentiable bijection from the set

C = [0, 1)n−1 × (0, 1] ' [0, 1)n ⊆ [0, 1]n

to each of the 2r disjoint components of F ; it can be written out explicitly in terms of
exponentials and the identity function. The boundary ∂C of the unit cube is clearly (n−1)-
Lipschitz parametrizable, so ∂F≤1 is (n− 1)-Lipschitz parameterizable.

Applying Corollary 18.8 to the set S = F≤1 with t replaced by t1/n and recalling that
F≤t = t1/nF≤1 yields the asymptotic bound

#(F≤t ∩ OK) =
µ(F≤1)

covol(OK)
(t1/n)n +O

(
(t1/n)n−1

)
=

(
µ(F≤1)

|discOK |1/2

)
t+O

(
t1−1/n

)
, (3)

so the number of elements of OK in F≤t grows linearly with t.
Our next task is compute µ(F≤1). To do this we will use the isomorphism in (2) to make

a change of coordinates, and we need to understand how this affects the Haar measure µ
on K×R ⊆ KR (normalized as in §13.2 using the canonical inner product). For each factor
R× of K×R = (R×)r × (C×)s we have

R× → R× {±1}
x 7→ (log |x|, sgnx)

±e` ←[ (`,±1)

dx 7→ e`d`µ{±1},
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where dx and d` denote the standard Lebesgue measures and µ{±1} is just the counting
measure on the discrete set {±1}. For each factor C×,

C× → C× [0, 2π)

z 7→ (2 log |z|, arg z)

e`/2 ←[ (`, θ)

2dA 7→ 2e`/2d(e`/2)dθ = e`d`dθ,

where dA is the standard Lebesgue measure on C (so 2dA is the measure on C× as a
component of K×R under the Haar measure µ on K×R ⊆ KR), and d` and dθ are the usual
Lebesuge measures on R and [0, 2π), respectively. We therefore have

K×R
∼−→ Rr+s × {±1}r × [0, 2π)s

µ 7→ eT(x)µRr+sµr{±1}µ
s
[0,2π)

We now make one further change of coordinates

Rr+s → Rr+s−1 × R
x = (x1, . . . , xr+s) 7→ (x1, . . . , xr+s−1, y := T(x))

eT(x)µRr+s 7→ eyµRr+s−1dy

The map π : Rr+s → Rr+s−1 is just the coordinate projection, and the measure of π(R) in
Rr+s−1 is, by definition, the regulator RK (see Definition 14.10).

The Log map gives us a bijection

F≤1
∼−→ R+ (−∞, 0]

(
1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
,

x = |N(x)|1/nσ(x) 7→ log σ(x) + log |N(x)|
(

1

n
, . . . ,

1

n
,

2

n
, . . . ,

2

n

)
.

Thus the coordinate y ∈ (−∞, 0] is given by y = T(Log x) = log |N(x)|, and we can view
F≤1 as a union of cosets of Log−1(R) parameterized by ey = |N(x)| ∈ (0, 1].

Under our change of coordinates we thus have

K×R
∼−→ Rr+s−1 × R× {±1}r × [0, 2π)s

F≤1 → π(R)× (−∞, 0]× {±1}r × [0, 2π)s

Since RK = µRr+s−1(π(R)), we have

µ(F≤1) =

∫ 0

−∞
eyRK2r(2π)sdy

= 2r(2π)sRK .

Plugging this into (3) yields

#(F≤t ∩ OK) =

(
2r(2π)sRK

|discOK |1/2

)
t+O

(
t1−1/n

)
. (4)
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18.4 Proof of the analytic class number formula

We are now ready to prove the analytic class number formula. Our main tool is the following
theorem, which uses our analysis in the previous section to give a precise asymptotic estimate
on the number of ideals of bounded norm.

Theorem 18.9. Let K be a number field of degree n = r + 2s with r real and s complex
places. As t→∞, the number of nonzero ideals I ⊆ OK of absolute norm N(I) ≤ t is(

2r(2π)shKRK
wk|DK |1/2

)
t+O(t1−1/n),

where hK = # clOK is the class number, RK := covol(O×K) is the regulator, wK : #(OK)×tors
is the number of roots of unity in K, and DK := discOK is the discriminant.

Proof. In order to count nonzero ideals I ⊆ OK of norm N(I) ≤ t we will group them
by ideal class. For the trivial class, we just need to count nonzero principal ideals (α),
equivalently, the number of nonzero α ∈ OK with N(α) ≤ t, modulo the unit group O×K .
Dividing (4) by wK to account for the wK-to-1 map

F≤t ∩ OK −→ (K×R,≤t ∩ OK)/O×K

we obtain

#{(α) ⊆ OK : N(α) ≤ t} =

(
2r(2π)sRK
wK |DK |1/2

)
t+O(t1−1/n).

To complete the proof we just need to show that we get the same answer for every ideal
class; equivalently, that the nonzero ideals I of norm N(I) ≤ t are equidistributed among
ideal classes, as t→∞.

Let us fix an ideal class c = [Ic], with Ic ⊆ OK a nonzero (integral) ideal (recall that
every ideal class contains an integral ideal, see Theorem 13.18). Multiplication by Ic defies
a bijection

{ideals I ∈ [I−1c ] : N(I) ≤ t} ×Ic−→ {nonzero principal ideals J ⊆ Ic : N(J) ≤ tN(Ic)}
←→ {nonzero α ∈ Ic : |N(α)| ≤ tN(Ic)}/O×K .

Let Sc denote the RHS. Applying the exact same argument as in the case Ic = OK , we have

#Sc =

(
2r(2π)sRK
wk covol(Ic)

)
tN(Ic) +O(t1−1/n)

=

(
2r(2π)sRK

wk covol(OK)N(Ic)

)
tN(Ic) +O(t1−1/n)

=

(
2r(2π)sRK
wk|DK |1/2

)
t+O(t1−1/n),

which does not depend on the ideal class c. Summing over ideal classes then yields

#{nonzero ideals I ⊆ OK : N(I) ≤ t} =
∑

c∈cl(OK)

#Sc =

(
2r(2π)shKRK
wK |DK |1/2

)
t+O(t1−1/n),

as claimed.
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To derive the analytic class number formula from Theorem 18.9 we need a couple of
easy lemmas from complex analysis.

Lemma 18.10. Let a1, a2, . . . be a sequence of complex numbers and let σ be a real number.
Suppose that

a1 + · · ·+ at = O(tσ) (as t→∞).

Then the Dirichlet series
∑
ann

−s converges to a holomorphic function for Re s > σ.

Proof. Let A(x) :=
∑

0<n≤x an. Writing the Dirichlet sum as a Stieltjes integral (apply
Corollary 17.36 with f(n) = n−s and g(n) = an), for Re(s) > σ we have

∞∑
n=1

ann
−s =

∫ ∞
1−

x−s dA(x)

=
A(x)

xs

∣∣∣∞
1−
−
∫ ∞
1−

A(x) dx−s

= (0− 0)−
∫ ∞
1−

A(x)(−sx−s−1) dx

= s

∫ ∞
1−

A(x)

xs+1
dx.

Note that we used |A(x)| = O(xσ) and Re(s) > σ to conclude that limx→∞A(x)/xs = 0.
For any ε > 0, the integral on the RHS converges uniformly on Re(s) ≥ σ+ ε, thus the sum
converges to a holomorphic function on Re(s) ≥ σ+ ε for all ε > 0, hence on Re(s) > σ.

Remark 18.11. The lemma gives us an abscissa of convergence σ for the Dirichlet series∑
ann

−s; this is analogous to the radius of convergence of a power series.

Lemma 18.12. Let a1, a2, . . . be a sequence of complex numbers that satisfies

a1 + · · ·+ at = ρt+O(tσ) (as t→∞)

for some σ ∈ [0, 1) and ρ ∈ C×. Then the Dirichlet series
∑
ann

−s converges on Re(s) > 1
and has a meromorphic continuation to Re(s) > σ that is holomorphic except for a simple
pole at s = 1 with residue ρ.

Proof. Define bn := an − ρ. Then b1 + · · ·+ bt = O(tσ) and∑
ann

−s = ρ
∑

n−s +
∑

bnn
−s = ρ ζ(s) +

∑
bnn
−s.

We have already proved that the Riemann zeta function ζ(s) is holomorphic on Re(s) > 1
and has a meromorphic continuation to Re(s) > 0 that is holomorphic except for a simple
pole at 1 with residue 1. By the previous lemma,

∑
bnn
−s is holomorphic on Re(s) > σ, and

since σ < 1 it is holomorphic at s = 1. So the entire RHS has a meromorphic continuation
to Re(s) > σ that is holomorphic except for the simple pole at 1 coming from ζ(s), and the
residue at s = 1 is ρ · 1 + 0 = ρ.

We are now ready to prove the analytic class number formula.
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Theorem 18.13 (Analytic Class Number Formula). Let K be a number field of
degree n with r real and s complex places. The Dedekind zeta function ζK(z) extends to
a meromorphic function on Re(z) > 1 − 1

n that is holomorphic except for a simple pole at
z = 1 with residue

lim
z→1+

(z − 1)ζK(z) = ρK :=
2r(2π)shKRK

wK |DK |1/2
,

where hK := # clOK is the class number, RK is the regulator, wK := #(O×K)tors is the
number of roots of unity in K, and DK := discOK is the discriminant.

Proof. We have

ζK(z) =
∑
I

N(I)−s =
∑
m≥1

amm
−s,

where I ranges over nonzero ideals of OK , and am := #{I : N(I) = m}. By Theorem 18.9,

a1 + · · ·+ at = #{I : N(I) ≤ t} = ρt+O(t1−1/n) (as t→∞)

Applying Lemma 18.12 with σ = 1 − 1/n, we see that ζK(z) =
∑
amm

−s extends to a
meromorphic function on Re(z) > 1− 1/n that is holomorphic except for a simple pole at
z = 1 with residue ρK .

Remark 18.14. As previously noted, Hecke proved that ζK(z) extends to a meromorphic
function on C with no poles other than the simple pole at z = 1, and it satisfies a functional
equation. If we define the gamma factors

ΓR(z) := π−z/2Γ
(
z
2

)
, and ΓC(z) := (2π)−zΓ(z),

and define the completed zeta function

ξK(z) := |DK |z/2ΓR(z)rΓC(z)sζK(z),

where r and s are the number of real and complex places of K, respectively, then ξK(z) is
holomorphic except for simple poles at z = 0, 1 and satisfies the functional equation

ξK(z) = ξK(1− z).

In the case K = Q, we have r = 1 and s = 0, so

ξQ(z) = ΓR(z)ζ(z) = πz/2Γ( z2)ζQ(z),

which is precisely the completed zeta function Z(z) we defined for the Riemann zeta function
ζ(z) = ζQ in Lecture 16.
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