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15 The Riemann zeta function and prime number theorem

We now divert our attention from algebraic number theory for the moment to talk about
zeta functions and L-functions. These are analytic objects (complex functions) that are
intimately related to the global fields we have been studying. We begin with the progenitor
of all zeta functions, the Riemann zeta function.

For the benefit of those who have not taken complex analysis (which is not a formal
prerequisite for this course) the next section briefly recalls some of the basic definitions
and facts we we will need; these are elementary results covered in any introductory course
on complex analysis, and we state them only at the level of generality we need, which is
minimal. Those familiar with this material should feel free to skip to Section 15.2, but may
want to look at Section 15.1.2 on convergence, which will be important in what follows.

15.1 A quick recap of some basic complex analysis

The complex numbers C are a topological field whose topology is defined by the distance
metric d(x, y) = |x − y| induced by the standard absolute value |z| :=

√
zz̄; all implicit

references to the topology on C (open, compact, convergence, limits, etc.) are made with this
understanding. For the sake of simplicity we restrict our attention to functions f : Ω → C
whose domain Ω is an open subset of C (so Ω denotes an open set throughout this section).

15.1.1 Holomorphic and analytic functions

Definition 15.1. Let f : Ω→ C be a function. The derivative of f at a point z0 ∈ Ω is

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

whenever this limit exists. If it does we say that f is differentiable at z0. If f is differentiable
at every point in an open neighborhood of z0, we say that f is holomorphic at z0 (this is a
stronger condition than being differentiable at z0). If f is holomorphic at every point in an
open set U ⊆ Ω we say that f is holomorphic on U . If f is holomorphic on Ω we say that f
is a holomorphic function. Holomorphic functions on C are also called entire functions.

The derivative satisfies all the properties you would expect. The set of holomorphic
functions on Ω form a C-algebra O(Ω) that is closed under composition on which differ-
entiation is a linear operator and the usual product rule (fg)′ = f ′g + fg′ and chain rule
(fg)′ = f ′(g)g′ hold. All polynomials are entire, as is the exponential function.

Theorem 15.2 (Holomorphic Identity Theorem). Let f and g be two complex func-
tions that are both holomorphic on a connected open set Ω, and let U be a nonempty open
subset of Ω. If the restrictions f |U and g|U coincide, then so do f |Ω and g|Ω.

Theorem 15.2 allows us to unambiguously extend the domain of a holomorphic function
f : U → C to a connected open set Ω containing U , provided we can find a holomorphic
function g : Ω→ C for which g|U = f . The function g is necessarily the unique holomorphic
function on Ω that restricts to f , and we call it the analytic continuation of f to Ω (it
would make more sense to call it the holomorphic continuation of f to Ω, but as explained
in Remark 15.6 below, the terms analytic and holomorphic may be used interchangeably).
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Example 15.3. Let f : U → C be the function defined by the series
∑

n≥0 z
n, which

converges on the unit disk U := {z : |z| < 1}. The series defining f diverges for |z| ≥ 1, but
the function g(z) = 1/(1−z) agrees with f on U and is holomorphic on the connected open
set Ω = C−{1}; thus g is the analytic continuation of f to Ω. The values of g(z) at points
z 6∈ U cannot be meaningfully interpreted in the terms of the series defining f , but it is
nevertheless amusing to do so; consider g(2) = −1 =: 1 + 2 + 4 + 8 + · · · , for example. One
can argue that if one wishes to assign a value to this divergent series, the only reasonable
choice is −1, since this is the value that must be assigned by any holomorphic function that
extends the domain of f to a connected open set containing 2.

Definition 15.4. A function f : Ω → C is analytic at z0 if there is an open neighbor-
hood U ⊆ Ω of z on which

f(z) =

∞∑
n=0

an(z − z0)n.

Equivalently, f is holomorphic at z0 and agrees with its Taylor series expansion

∞∑
n=0

f (n)(z)

n!
(z − z0)n

at all points z ∈ U ; here f (n)(z0) denotes the nth derivative of f at z0. If f is analytic at
every point in an open set U we say that f is analytic on U .

Theorem 15.5. A complex function is holomorphic on an open set U if and only if it is
analytic on U .

Remark 15.6. Theorem 15.5 implies that the terms “holomorphic” and “analytic” can be
used interchangeably; modern usage tends to favor the former, but historically the latter
was more commonly used.

15.1.2 Convergence

Recall that a series
∑∞

n=1 an of complex numbers converges absolutely if the series
∑

n |an| of
nonnegative real numbers converges. An equivalent definition is that the function a(n) := an
is integrable with respect to the counting measure µ on the set of positive integers N; indeed
if the series is absolutely convergent then

∞∑
n=1

an =

∫
N
a(n)µ,

and if the series is not absolutely convergent, then the integral not defined. Absolute
convergence is effectively built-in to the definition of the Lebesgue integral, which requires
that for a(n) = x(n) + iy(n) to be integrable, the positive real functions |x(n)| and |y(n)|
must both be integrable (equivalently, summable), and separately computes the sums of the
positive and negative subsequences of (x(n)) and (y(n)) as suprema over finite subsets.

While equivalent, the measure-theoretic perspective has some advantages. It makes it
immediately clear that we may replace the index set N with any set of the same cardinality,
since the counting measure depends only on the cardinality of N, not its ordering. We
are thus free to sum over any countable index set, including Z, Q, any finite product of
countable sets, and any countable coproduct of countable sets (such as countable direct
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sums of Z); such sums are ubiquitous in number theory but generally have no canonical (or
even meaningful) interpretation as limits of partial sums in the usual sense and must be
understood as absolutely convergent sums in which the index set need not be ordered. The
measure-theoretic view makes also makes it clear that we may convert any sum of the form∑

X×Y into an iterated sum
∑

X

∑
Y (or vice versa), via Fubini’s theorem.

We say that an infinite product
∏
n an of nonzero complex numbers is absolutely con-

vergent when the sum
∑

n log an is, in which case
∏
n an := exp(

∑
n log an).1 This implies

that an absolutely convergent product cannot converge to zero, and the sequence (an) must
converge to 1 (no matter how we order the an). All of our remarks above about absolutely
convergent series apply to absolutely convergent products as well.

A series or product of complex functions {fn(z)} is absolutely convergent on S if the
series or product of complex numbers {fn(z)} is absolutely convergent for all z ∈ S.

A sequence of complex functions (fn) converges uniformly on S if there is a function f
such that for every ε > 0 there is an integer N for which supz∈S |fn(z) − f(z)| < ε for
all n ≥ N . A series of complex functions

∑
fn converges uniformly if the corresponding

sequence of partial sums converges uniformly. A sequence or series of complex functions
converges locally uniformly on S if it converges uniformly on every compact subset of S.

Proposition 15.7. A series of holomorphic functions that converges absolutely and locally
uniformly on an open set U converges to a holomorphic function on U . In particular, any
power series that converges absolutely and locally uniformly on U uniquely determines a
holomorphic function on U .

15.1.3 Meromorphic functions

Definition 15.8. A function f : Ω → C is meromorphic on an open set U if there is a
discrete set S ⊆ U such that f is holomorphic on U − S ⊆ Ω and for all z0 ∈ S we have
limz→z0 |f(z)| =∞. The points z0 ∈ S are poles of f .

If z0 is a pole of f : Ω → C then it is necessarily the case that z0 6∈ Ω, but there is
an open neighborhood U of z0 for which U − Ω = z0. Note that if f is meromorphic on
its domain then it is technically a holomorphic function (if f has a pole at z0 then z0 is
not in its domain).2 The term meromorphic function generally refers to a function that is
meromorphic on the interior of the closure of its domain, which is the largest set on which a
function can be meromorphic. We may speak of the analytic continuation of a meromorphic
function f : U → C to a meromorphic function g : Ω→ C, where Ω is a connected open set
containing U and g|U = F .

Every meromorphic function is infinitely differentiable, and its derivatives are all mero-
morphic on the same set and have the same poles (but with higher orders). For any open
set Ω the meromorphic functions on Ω form a field F (Ω) in which the usual quotient rule
(f/g)′ = (f ′g− g′f)/g2 holds (the domains of the functions in F (Ω) will be open sets U for
which S = Ω − U is discrete). The field F (Ω) is the fraction field of the integral domain
O(Ω), and it contains all rational functions on Ω. It follows from Theorem 15.5 that every
f ∈ F (Ω) has a Laurent series expansion∑

n≥n0

an(z − z0)n

1In this definition we fix a branch of log z, say log z := log |z|+ iArg z with Arg z ∈ (−π, π).
2One can instead consider functions that take values in P1(C).
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about any point z0 ∈ Ω, in which we may assume an0 6= 0. Associated to each z0 is
a discrete valuation that assigns the integer n0 to f ; this discrete valuation is typically
denoted ordz0(f) and called the order of vanishing of f at z0; it is positive when f has a
zero z0 and negative when f has a pole at z0. Equivalently, ordz0(f) is the greatest integer
n0 for which the function f(z)/(z − z0)n0 is holomorphic at z0. The coefficient of a−1 in
the Laurent series expansion of f at z0 is called the residue of f at z0 and denoted resz0(f).
When ordz0(f) = −1 we say that f has a simple pole at z0, and in this case resz0 is the
uniquely complex number a for which f − a/(z − z0) is holomorphic at z0.

15.1.4 Contour integration

We shall restrict our attention to integrals along contours defined by piecewise-smooth
parameterized curves; this covers all the cases we shall need.

Definition 15.9. A parameterized curve is a continuous function γ : [a, b] → C whose
domain is a compact interval [a, b] ⊆ R. We say that γ is smooth if it has a continuous
nonzero derivative on [a, b], and piecewise-smooth if [a, b] can be partitioned into finitely
many subintervals on which the restriction of γ is smooth. We say that γ is closed if
γ(a) = γ(b), and simple if it is injective on [a, b) and (a, b]. Henceforth we will use the term
curve to refer to any piecewise-smooth parameterized curve γ, or to its oriented image of
in the complex plane (directed from γ(a) to γ(b)), which we may also denote γ.

Definition 15.10. Let f : Ω→ C be a continuous function and let γ be a curve in Ω. We
define the contour integral ∫

γ
f(z)dz :=

∫ b

a
f(γ(t))γ′(t)dt,

whenever the integral on the RHS (which is defined as a Riemann sum in the usual way)
converges. Whether

∫
γ f(z)dz converges, and if so, to what value, does not depend on the

parameterization of γ: if γ′ is another parameterized curve with the same (oriented) image
as γ, then

∫
γ′ f(z)dz =

∫
γ f(z)dz.

We have the following analog of the fundamental theorem of calculus.

Theorem 15.11. Let γ : [a, b] → C be a curve in an open set Ω and let f : Ω → C be a
holomorphic function Then ∫

γ
f ′(z)dz = f(γ(b))− f(γ(a)).

Recall that the Jordan curve theorem implies that every simple closed curve γ parti-
tions C into two components, one of which we may unambiguously designate as the interior
(the one on the left of our positively oriented curves). We say that γ is contained in an
open set U if both γ and its interior lie in U .

Theorem 15.12 (Cauchy’s Theorem). Let U be an open set containing a simple closed
curve γ. For any function f that is holomorphic on U we have∫

γ
f(z)dz = 0.
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Cauchy’s theorem generalizes to meromorphic functions.

Theorem 15.13 (Cauchy Residue Formula). Let U be an open set containing a simple
closed curve γ. Let f be a functions that is meromorphic on U , let z1, . . . , zn be the poles
of f that lie in the interior of γ, and suppose that no pole of f lies on γ. Then∫

γ
f(z)dz = 2πi

n∑
i=1

reszi(f).

To see where the 2πi comes from, consider
∫
γ
dz
z with γ(t) = eit for t ∈ [0, 2π].

Cauchy’s residue formula can be used to recover the coefficients f (n)(a)/n! appearing in
the Laurent series expansion of a meromorphic function at a (apply it to f(z)/(z − a)n+1).
One of many useful consequences of this is Liouville’s theorem, which can be proved by
showing that the Laurent series expansion of a bounded holomorphic function on C about
any point has only one nonzero coefficient (the constant coefficient) and an infinite radius
of convergence.

Theorem 15.14 (Liouville’s theorem). Bounded entire functions are constant.

We also have the following converse of Cauchy’s theorem.

Theorem 15.15 (Morera’s Theorem). Let f be a continuous function and on an open set
U , and suppose that for every simple closed curve γ contained in U we have∫

γ
f(z)dz = 0.

Then f is holomorphic on U .

Corollary 15.16. A sequence or series of functions holomorphic on an open set U that
converges locally uniformly on U converges to a holomorphic function on U .

Theorem 15.17 (Weierstrass M-test). Let (fn) be a sequence of functions holomorphic
on an open set U , and suppose there are positive real numbers Mn for which the series∑

n≥1Mn converges and such that |fn(z)| ≤Mn for all z ∈ C for every compact C ⊆ U . The
series

∑
n fn(z) converges to a holomorphic function f on U for which f ′(z) =

∑
n≥1 f

′
n(z).

15.2 The Riemann zeta function

Definition 15.18. The Riemann zeta function is the complex function defined by

ζ(s) :=
∑
n≥1

n−s,

for Re(s) > 1. The series converges absolutely and locally uniformly for Re(s) > 1 and thus
defines a holomorphic function on Re(s) > 1, since each n−s = e−s logn is entire.

Theorem 15.19 (Euler product). For Re(s) > 1 we have the identity

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1,

where the the absolutely convergent product ranges over primes; thus ζ(s) 6= 0 for Re(s) > 1.
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The product in the theorem above ranges over primes p. This is a standard practice in
analytic number theory that we will follow: the symbol p always denotes a prime, and any
sum or product over p is understood to be over primes.

Proof. The one-line proof is that unique factorization and absolute convergence imply∑
n≥0

n−s =
∑

e2,e3,...≥0

(2e23e3 · · · )−s =
∏
p

∑
e≥0

p−es =
∏
p

(1− p−s)−1.

However the middle equality deserves further justification. For each integer m ≥ 1, let Sm
be the set of m-smooth numbers: positive integers with prime factors p ≤ m. Now define

ζm(s) :=
∑
n∈Sm

n−s,

which converges absolutely and locally uniformly on Re(s) > 1. If p1, . . . , pk are the primes
up to m, then we may write the absolutely convergent sum as

ζm(s) =
∑
n∈Sm

n−s =
∑

e1,...,ek≥0

(pe11 · · · p
ek
k )−s =

∑
e1≥0

p−e1s1

∑
e2≥0

p−e2s2 · · ·
∑
ek≥0

peksk .

For Re(s) > 1 we have
∑

e≥0 p
−es = 1 + p−s + p−2s + · · · = (1 − p−s)−1, for any prime p.

Applying this k times yields the finite product

ζm(s) =
∏
p≤m

(1− p−s)−1.

We now note that for any δ > 0 the sequence of functions ζm(s) converges uniformly on
Re(s) > 1 + δ to ζ(s); indeed, for any ε > 0 and any such s we have

|ζm(s)− ζ(s)| ≤

∣∣∣∣∣∣
∑
n≥m

n−s

∣∣∣∣∣∣ ≤
∑
n≥m
|n−s| =

∑
n≥m

n−Re(s) ≤
∫ ∞
m

x−1−δdx ≤ 1

δ
m−δ < ε

for all sufficiently large m. It follows that the sequence ζm(s) converges locally uniformly
to ζ(s) on Re(s) > 1, and therefore the sequence of functions Pm(s) :=

∏
p≤m(1 − p−s)−1

does as well. The sequence logPm(s) clearly converges to log
∏
p(1− p−s)−1, and

∑
p

| log(1− p−s)−1| =
∑
p

∣∣∣∣∣∣
∑
e≥1

1

e
p−es

∣∣∣∣∣∣ ≤
∑
p

∑
e≥1

|p−s|e =
∑
p

(|ps| − 1)−1 <∞

is absolutely convergent (hence finite), thus
∏
p(1− p−s)−1 is absolutely convergent (hence

nonzero); here we have used the log(1− z) = −
∑

n≥1 z
n for |z| < 1.

Theorem 15.20 (Analytic continuation I). For Re(s) > 1 we have

ζ(s) =
1

s− 1
+ φ(s),

where φ(s) is a holomorphic function on Re(s) > 0. Thus ζ(s) extends to a meromorphic
function on Re(s) > 0 that has a simple pole at s = 1 with residue 1 and no other poles.
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Proof. For Re(s) > 1 we have

ζ(s)− 1

s− 1
=
∑
n≥1

n−s −
∫ ∞

1
x−sdx

=
∑
n≥1

n−s −
∞∑
n=1

∫ n+1

n
x−sdx

=
∑
n≥1

∫ n+1

n
(n−s − x−s)dx.

We now define φn(s) :=
∫ n+1
n (n−s − x−s)dx. For any s and x ∈ [n, n+ 1] we have

|n−s − x−s| =
∣∣∣∣∫ x

n
st−s−1dt

∣∣∣∣ ≤ ∫ x

n

|s|
t1+Re(s)

dt ≤ |s|
n1+Re(s)

Thus

|φn(x)| ≤
∫ n+1

n

∣∣n−s − x−s∣∣ ds ≤ |s|
n1+Re(s)

.

We now note that for Re(s) ≥ ε > 0 we have∑
n≥1

|s|
n1+Re(s)

<∞.

Each φn is holomorphic, so by the Weierstrass M -test, the series
∑

n≥1 φn(s) converges to

a function φ(s) that is holomorphic on Re(s) > 0 (and clearly equal to ζ(s)− 1
s−1).

We now wish to show that ζ(s) has no zeros on Re(s) = 1, this is the key to proving the
prime number theorem. For this we rely on the following lemma.

Lemma 15.21. For all x, y ∈ R with x > 1 we have |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 1.

Proof. From the Euler product ζ(s) =
∏
p(1− p−s)−1, we see that for Re(s) > 1 we have

log |ζ(s)| = −
∑
p

log |1− p−s| = −
∑
p

Re log(1− p−s) =
∑
p

∑
n≥1

Re(p−ns)

n
,

where we have used the general facts log |z| = Re log z and log(1 − z) = −
∑

n≥1
zn

n for

|z| < 1 (note that Re(s) > 1 implies |p−s| = p−Re(s) < 1). Applying this to s = x+ iy yields

log |ζ(x+ iy)| =
∑
p

∑
n≥1

cos(ny log p)

npnx

Thus

log |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| =
∑
p

∑
n≥1

3 + 4 cos(ny log p) + cos(2ny log p)

npnx
.

We now note that the identity cos(2θ) = 2 cos2 θ − 1 implies

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0,

Taking θ = ny log p yields log |ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| ≥ 0, which proves the lemma.
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Corollary 15.22. ζ(s) has no zeros on Re(s) ≥ 1.

Proof. We know from Theorem 15.19 that ζ(s) has no zeros on Re(s) > 1, so suppose
ζ(1 + iy) = 0 for some y ∈ R. Then y 6= 0, since ζ(s) has a pole at s = 1, and we know that
ζ(s) does not have a pole at 1 + 2iy 6= 1, by Theorem 15.20. We therefore must have

lim
x→1
|ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)| = 0, (1)

since ζ(s) has a simple pole at s = 1, a zero at 1 + iy, and no pole at 1 + 2iy, but this
contradicts Lemma 15.21.

15.3 The Prime Number Theorem

The prime counting function π : R→ Z≥0 is defined by

π(x) :=
∑
p≤x

1;

it counts the number of primes up to x. The Prime Number Theorem (PNT) states that

π(x) ∼ x

log x
.

The notation f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1; one says that f is asymptotic to,
in other words, the functions f and g grow at the same asymptotic rate.

This conjectured growth rate for π(x) dates back to Gauss and Legendre in the late 18th
century. In fact Gauss believed the asymptotically equivalent but more accurate statement3

π(x) ∼ Li(x) :=

∫ ∞
2

dx

log x
.

However it was not until a century later that the prime number theorem was independently
proved by Hadamard [2] and de la Vallée Poussin [7] in 1896, building on the work of
Riemann [5], who in 1860 showed that there is a precise connection between the zeros of
ζ(s) and the distribution of primes (we shall say more about this later), but was unable to
prove the prime number theorem.

The proof we will give is more recent and due to Newman [4], but it relies on the
same properties of the Riemann zeta function that were exploited by both Hadamard and
de la Vallée, the most essential of which is the fact that ζ(s) has no zeros on Re(s) ≥ 1
(Corollary 15.22). A wonderfully concise version of Newman’s proof by Zagier can be
found in [9]; we shall be slightly more expansive here. We should note that there are also
“elementary” proofs of the prime number theorem obtained by Erdös [1] and Selberg [6]
in the 1940s that do not use the Riemann zeta function, but they are elementary only in
the sense that they do not use complex analysis; the elementary proofs are actually more
complicated than those that use complex analysis.

Rather than work directly with π(x), it is more convenient to work with the log-weighted
prime-counting function defined by Chebyshev4

ϑ(x) :=
∑
p≤x

log p,

whose growth rate differs from that of π(x) by a logarithmic factor.

3More accurate in the sense that |π(x)− Li(x)| grows more slowly than |π(x)− x
log x
| as x→∞.

4As with most Russian names, there is no canonical way to write Chebyshev in the latin alphabet and
one finds many variations in the literature; in English, the spelling Chebyshev is now the most widely used.

18.785 Fall 2015, Lecture #15, Page 8

https://en.wikipedia.org/wiki/Pafnuty_Chebyshev


Theorem 15.23 (Chebyshev). We have π(x) ∼ x
log x if and only ϑ(x) ∼ x.

Proof. We clearly have 0 ≤ ϑ(x) ≤ π(x) log x, thus

ϑ(x)

x
≤ π(x) log x

x
.

For every ε > 0 we have

ϑ(x) ≥
∑

x1−ε<p≤x

log p ≥ (1− ε)(log x)
(
π(x)− π(x1−ε)

)
≥ (1− ε)(log x)(π(x)− x1−ε),

and therefore

π(x) ≤ 1

1− ε
ϑ(x)

log x
+ x1−ε.

Thus for all ε > 0 we have

ϑ(x)

x
≤ π(x) log x

x
≤ 1

1− ε
ϑ(x)

x
+

log x

xε
.

The last term tends to 0 as x→∞, and the lemma follows: by choosing ε appropriately we
can make the ratios of ϑ(x) to x and π(x) to x/ log x arbitrarily close together as x →∞,
and if one of them tends to 1, then so must the other.

In view of Chebyshev’s result, the prime number theorem is equivalent to the statement
ϑ(x) ∼ x, which is what we will prove. The first step is to show that the asymptotic growth
rate of ϑ(x) is at most linear in x.

Lemma 15.24 (Chebyshev). For all x ≥ 1 we have ϑ(x) ≤ (4 log 2)x; thus ϑ(x) = O(x).

Proof. For any integer n ≥ 1, the binomial theorem implies

22n = (1 + 1)2n =
2n∑
m=0

(
2n

m

)
≥
(

2n

n

)
=

(2n)!

n!n!
≥

∏
n<p≤2n

p = exp(ϑ(2n)− ϑ(n)),

Since (2n)! is divisible by every prime p ∈ (n, 2n] but n! is not divisible by any such p.
Taking logarithms on both sides yields the bound

ϑ(2n)− ϑ(n) ≤ 2n log 2,

for all integers n ≥ 1. For any integer m ≥ 1 we have

ϑ(2m) =
m∑
n=1

(
ϑ(2n)− ϑ(2n−1)

)
≤

m∑
n=1

2n log 2 ≤ 2m+1 log 2.

For any real x ≥ 1 we can choose an integer m ≥ 1 so that 2m−1 ≤ x < 2m, and then

ϑ(x) ≤ ϑ(2m) ≤ 2m+1 log 2 = (4 log 2)2m−1 ≤ (4 log 2)x,

as claimed.
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In order to prove ϑ(x) ∼ x, we will use a general analytic criterion that is applicable to
any non-decreasing real function.

Lemma 15.25. Let f : R≥1 → R be a non-decreasing function for which the integral∫∞
1

f(t)−t
t2

dt converges. Then f(x) ∼ x.

Proof. Let F (x) :=
∫ x

1
f(t)−t
t2

dt. The hypothesis is that limx→∞ F (x) exists. This implies
that for all λ > 1 and all ε > 0 we must have |F (λx)−F (x)| < ε for all sufficiently large x.

Consider any λ > 1. Suppose there is an unbounded sequence (xn) such that f(xn) ≥
λxn for all n ≥ 1. Then for each xn we have

F (λxn)− F (xn) =

∫ λxn

xn

f(t)− t
t2

dt ≥
∫ λxn

xn

λxn − t
t2

dt =

∫ λ

1

λ− t
t2

dt = c,

for some c > 0, where we used the fact that f is non-decreasing to get the middle inequality.
Taking ε < c, we have |F (λxn) − F (xn)| = c > ε for arbitrarily large xn, a contradiction.
Thus f(x) < λx for all sufficiently large x. A similar argument shows that f(x) > 1

λx for all
sufficiently large x. These inequalities hold for all λ > 1, so we must have limx→∞ f(x)/x =
1, equivalently, f(x) ∼ x.

We now recall the Laplace transform.

Definition 15.26. Let h : R>0 → R be a piecewise continuous function. The Laplace
transform of h is the complex function defined by

(Lh)(s) :=

∫ ∞
0

e−sth(t)dt;

it is a holomorphic function on Re(s) > c for any c ∈ R for which h(t) = O(ect).

The following properties of the Laplace transform are easy to verify:

• L(g + h) = Lg + Lh, and for any a ∈ R we have L(ah) = αLh.

• If h(t) = a ∈ R is constant then Lh = a
s .

• L(eath)(s) = (Lh)(s− a) for all a ∈ R.

We now define the auxiliary function

Φ(s) :=
∑
p

p−s log p,

which is related to ϑ(x) by the following lemma.

Lemma 15.27. L(ϑ(et))(s) = Φ(s)
s is a holomorphic function on Re(s) > 1.

Proof. By Lemma 15.24, ϑ(et) = O(et), so Lϑ(et) is holomorphic on Re(s) > 1. Let pn be
the nth prime, and put p0 := 0. The function ϑ(et) is constant on (log pn, log pn+1), so∫ log pn+1

log pn

e−stϑ(et)dt = ϑ(pn)

∫ log pn+1

log pn

e−stdt =
1

s
ϑ(pn)

(
p−sn − p−sn+1

)
.
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We then have

(Lϑ(et))(s) =

∫ ∞
0

e−stϑ(et)dt =
1

s

∞∑
n=1

ϑ(pn)
(
p−sn − p−sn+1

)
=

1

s

∞∑
n=1

ϑ(pn)p−sn −
1

s

∞∑
n=1

ϑ(pn−1)p−sn

=
1

s

∞∑
n=1

(
ϑ(pn)− ϑ(pn−1)

)
p−sn

=
1

s

∞∑
n=1

p−sn log pn =
Φ(s)

s
.

Let us now consider the function H(t) := ϑ(et)e−t − 1. It follows from the lemma and
standard properties of the Laplace transform that on Re(s) > 0 we have

(LH)(s) = L(ϑ(et)e−t)(s)− (L1)(s) = L(ϑ(et))(s+ 1)− 1

s
=

Φ(s+ 1)

s+ 1
− 1

s
.

Lemma 15.28. The function Φ(s)− 1
s−1 extends to a meromorphic function on Re(s) > 1

2
that is holomorphic on Re(s) ≥ 1.

Proof. The logarithmic derivative ζ′(s)
ζ(s) of ζ(s) is meromorphic on Re(s) > 0, since (the

extension of) ζ(s) is. In term of the Euler product we have

−ζ
′(s)

ζ(s)
= − log

(∏
p

(1− p−s)−1

)′
=

(∑
p

log(1− p−s)

)′

=
∑
p

p−s log p

1− p−s
=
∑
p

log p

ps − 1
=
∑
p

(
1

ps
+

1

ps(ps − 1)

)
log p

= Φ(s) +
∑
p

log p

ps(ps − 1)
.

The sum on the RHS converges absolutely and locally uniformly to a holomorphic function
on Re(s) > 1/2. The LHS is holomorphic on Re(s) > 1, since ζ(s) has no zeros or poles in
this region; moreover the LHS has only a simple pole of residue 1 at s = 1 on Re(s) = 1, since
ζ(s) has no zeros on Re(s) = 1 and a simple pole of residue 1 at s = 1 (by Theorem 15.20). It
follows that Φ(s)− 1

s−1 extends to a meromorphic function on Re(s) > 1
2 that is holomorphic

on Re(s) ≥ 1.

Corollary 15.29. The functions Φ(s + 1) − 1
s and (LH)(s) = Φ(s+1)

s+1 − 1
s both extend to

meromorphic functions on Re(s) > −1
2 that are holomorphic on Re(s) ≥ 0.

Proof. The first statement is immediate. For the second we note that

(LH)(s) =
Φ(s+ 1)

s+ 1
− 1

s
=

1

s+ 1

(
Φ(s+ 1)− 1

s

)
− 1

s+ 1

is holomorphic on Re(s) ≥ 0, since it is a sum of products of such functions.

The final step of the proof relies on the following analytic result.
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Theorem 15.30. Let f : R≥0 → R be a bounded piecewise continuous function, and suppose
its Laplace transform extends to a holomorphic function g(s) on Re(s) ≥ 0. Then the
integral

∫∞
0 f(t)dt converges and is equal to g(0).

This theorem is an example of what is known as a Tauberian theorem. The Laplace
transform

(Lf)(s) :=

∫ ∞
0

e−stf(t)dt,

is in general not defined on Re(s) ≤ c, where c is the least c for which f(t) = O(ect).
It may happen that the function Lf has an analytic continuation to a larger domain; for
example, if f(t) = et then (Lf)(s) = 1

s−1 extends to a holomorphic function on C − {1}.
But plugging values of s with Re(s) ≤ c into the integral usually does not work; in our
f(t) = et example, the integral diverges on Re(s) ≤ 1. The theorem says that when Lf
extends to a holomorphic function on the entire half-plane Re(s) ≥ 0, its value at s = 0 is
exactly what would get by plugging 0 into the integral defining Lf , even though you are in
general not allowed to do this.

This theorem is not difficult to prove, but as it is has no particular number-theoretic
content, we will not take the time to do so; see [9] for a short proof. We now ready to prove
the prime number theorem.

Theorem 15.31 (Prime Number Theorem). π(x) ∼ x
log x .

Proof. The function H(t) = ϑ(et)e−t − 1 is bounded (by Lemma 15.24) and piecewise
continuous, and its Laplace transform extends to a holomorphic function on Re(s) ≥ 0, by
Corollary 15.29. Theorem 15.30 then implies that the integral∫ ∞

0
H(t)dt =

∫ ∞
0

(
ϑ(et)e−t − 1

)
dt

converges. Replacing t with log x, we see that∫ ∞
1

(
ϑ(x)

1

x
− 1

)
dx

x
=

∫ ∞
1

ϑ(x)− x
x2

dx

converges, and Lemma 15.25 then implies ϑ(x) ∼ x, and this is equivalent to π(x) ∼ x
log x

by Theorem 15.23.

One disadvantage of our proof is that it does not give an error term. Using more
sophisticated methods, Korobov [3] and Vinogradov [8] independently obtained the bound

π(x) = Li(x) +O

(
x

exp
(
(log x)3/5+o(1)

)) ,
in which we note that the error term is bounded by O(x/(log x)n) for all n but is not
bounded by O(x1−ε) for any ε > 0. Assuming the Riemann Hypothesis, which states the
all zeros of ζ(s) in the critical strip 0 < Re(s) < 1 lie on the line Re(s) = 1

2 , one can prove

π(x) = Li(x) + x1/2+o(1).

There thus remains a large gap between what we can prove about the distribution of prime
numbers and what we believe to be true. Remarkably, other than refinements to the o(1)
term appearing in the Korobov-Vinogradov bound, essentially no progress has been made
in this direction in the past 50 years.
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