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13 The Minkowski bound, finiteness results

13.1 Lattices in real vector spaces

In Lecture 6 we defined the notion of an A-lattice in a finite dimensional K-vector space V
as a finitely generated A-submodule of V that spans V as a K-vector space, where K is the
fraction field of the domain A. In our usual AKLB setup, A is a Dedekind domain, L is a
finite separable extension of K, and the integral closure B of A in L is an A-lattice in the
K-vector space V = L. When B is a free A-module, its rank is equal to the dimension of
L as a K-vector space and it has an A-module basis that is also a K-basis for L.

We now want to specialize to the case A = Z, and rather than taking K = Q, we will
instead use the archimedean completion R of Q. Since Z is a PID, every finitely generated
Z-module in an R-vector space V is a free Z-module (since it is necessarily torsion free).
We will restrict our attention to free Z-modules with rank equal to the dimension of V
(sometimes called a full lattice).

Definition 13.1. Let V be a real vector space of dimension n. A (full) lattice in V is a
free Z-module of the form Λ := e1Z + · · ·+ enZ, where (e1, . . . , en) is a basis for V .

Any real vector space V of dimension n is isomorphic to Rn. By fixing an isomorphism,
equivalently, choosing a basis for V that we identify with the standard basis for Rn, we can
equip V with an inner product 〈·, ·〉 corresponding to the canonical inner product on Rn
(the standard dot product). This makes V into a normed vector space with the norm

‖x‖ :=
√
〈x, x〉 ∈ R≥0,

and also a metric space with distance metric

d(x, y) := ‖x− y‖.

While the inner product 〈·, ·〉 and distance metric d(·, ·) on V depend on our choice of basis
(equivalently, the isomorphism V ' Rn), the induced metric space topology does not; it
is the same as the standard Euclidean topology on Rn. The standard Lebesgue measure
on Rn is the unique Haar measure that assigns measure 1 to the unit cube [0, 1]n. This is
consistent with Euclidean norm on Rn, which assigns length 1 to the standard unit vectors.
Having fixed an inner product 〈·, ·〉 on V ' Rn, we normalize the Haar measure on V so
that the volume of a unit cube defined by any basis for V that is orthonormal with respect
to 〈·, ·〉 has measure 1.

Recall that a subset S of a topological space X is discrete if every s ∈ S lies in an open
neighborhood U ⊆ X that intersects S only at s.

Proposition 13.2. Let Λ be a subgroup of a real vector space V of finite dimension. Then Λ
is a lattice if and only if Λ is discrete and V/Λ is compact (Λ is cocompact).

Proof. Suppose Λ = e1Z + · · · enZ is a lattice; then e1, . . . , en is a basis for V . This basis
determines an isomorphism V

∼→ Rn of topological groups that sends Λ to Zn ⊆ Rn. The
subgroup Zn ⊆ Rn is clearly discrete and the quotient Rn/Zn ' U(1)n is clearly compact
(here U(1) is the circle group).

For the converse, assume Λ is discrete and V/Λ is compact. Let W be the subspace
of V spanned by Λ; the R-vector space V/W cannot have positive dimension, since it is
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contained in the compact space V/Λ, thus W = {0} and Λ spans V . By picking an R-basis
for V in Λ we obtain an isomorphism V

∼−→ Rn that allows us to identify Λ with a subgroup
of Rn containing Zn. We claim that the index [Λ : Zn] must be finite.

Proof of claim: choose an integer r ≥ 1 so that the ball of radius ε =
√
n/r about 0

intersects Λ only at 0; this is possible because Λ is discrete. We now subdivide the 1-cube
in Rn into 1

2r -cubes of which there are finitely many. If [Λ : Zn] is infinite, then one of these
1
2r -cubes contains at least two (in fact, infinitely many) distinct elements v, w ∈ Λ, which
must be separated by a distance that is strictly less than ε. But then 0 < ‖v − w‖ < ε,
which contradicts our choice of ε.

The claim implies that Λ is a finitely generated Z-module, hence a free Z-module (it is
torsion free and Z is a PID). It contains Zn with finite index so its rank is n.

Remark 13.3. One might ask why we are using the archimedean completion R of Q rather
than some nonarchimedean completion Qp of Q. The reason is that Z is not a discrete
subset of Qp; elements of Z can be arbitrarily close to 0 under the p-adic metric.

As a locally compact group, V ' Rn has a Haar measure µ (see Definition 12.11). Any
basis u1, . . . , un for V determines a parallelepiped

F (u1, . . . , un) := {a1u1 + · · ·+ anun : a1, . . . , an ∈ [0, 1)}.

If we fix u1, . . . , un as our basis for V ' Rn, we then normalize the Haar measure µ so that
it agrees with the standard normalization on Rn by defining µ(F (u1, . . . , un)) = 1.

For any other basis e1, . . . , en of V , if we let E = [eij ] be the matrix whose jth column
expresses ej =

∑
i eijui, in terms of our standard basis u1, . . . , un, then

µ(F (e1, . . . , en)) = |detE| =
√

detEt detE =
√

det(EtE) =
√

det[〈ei, ej〉]ij . (1)

This is precisely the factor by which we rescale µ if we switch to the basis e1, . . . , en.

Remark 13.4. If T : V → V is a linear transformation on a real vector space V ' Rn with
Haar measures µ, then for any measurable set S we have

µ(T (S)) = |detT |µ(S). (2)

This identity does not depend on a choice of basis; detT is the same regardless of which basis
we use to compute it. It implies, in particular, that the absolute value of the determinant
of any matrix in Rn×n is equal to the volume of the parallelepiped spanned by its rows (or
columns), a fact that we used above.

If Λ is a lattice e1Z+ · · ·+ enZ in V , the quotient space V/Λ is a compact group which
we may identify with the parallelepiped F (u1, . . . , un) ⊂ V , which forms a set of unique
coset representatives. More generally, we make the following definition.

Definition 13.5. Let Λ be a lattice in V ' Rn. A fundamental domain for Λ is a measurable
set F ⊆ V such that

V =
⊔
λ∈Λ

(F + λ).

In other words, F is a measurable set of unique coset representatives for V/Λ. Fundamental
domains exist: if Λ = e1Z + · · ·+ enZ we may take the parallelepiped F (e1, . . . , en).
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Proposition 13.6. Let Λ be a lattice in V ' Rn with Haar measure µ. Then µ(F ) = µ(G)
for all fundamental domains F and G for Λ.

Proof. For λ ∈ Λ, the set (F + λ)∩G is the λ-translate of F ∩ (G− λ); these sets have the
same measure since µ is translation-invariant. Partitioning F over translates of G yields

µ(F ) = µ

(⊔
λ∈Λ

(F ∩ (G− λ))

)
=
∑
λ∈Λ

µ(F ∩ (G− λ))

=
∑
λ∈Λ

µ((F + λ) ∩G) = µ

(⊔
λ∈Λ

(G ∩ (F + λ))

)
= µ(G),

where we have used the countable additivity of µ and the fact that Λ ' Zn is countable.

Definition 13.7. Let Λ be a lattice in V ' Rn with Haar measure µ. The covolume
covol(Λ) of Λ is the volume µ(F ) of any fundamental domain F for Λ.

Remark 13.8. Note that volumes and covolumes depend on the normalization of the Haar
measure µ, but ratios of them do not. In situations where we have a canonical way to
choose an isomorphism V → Rn (or V → Cn), such as when V is a number field (which is
our main application), we normalize the Haar measure µ on V so that the inverse image of
the unit cube in Rn has unit volume in V .

Proposition 13.9. If Λ′ ⊆ Λ are lattices in a real vector space V of finite dimension then

covol(Λ′) = [Λ : Λ′] covol(Λ)

Proof. Let F be a fundamental domain for Λ and let L be a set of unique coset represen-
tatives for Λ/Λ′. Then L is finite (because Λ and Λ′ are both cocompact) and

F ′ :=
⊔
λ∈L

(F + λ)

is a fundamental domain for Λ′. Thus

covol(Λ′) = µ(F ′) = (#L)µ(F ) = [Λ : Λ′] covol(Λ).

Definition 13.10. Let S be a subset of a real vector space. The set S is symmetric if it is
closed under negation, and it is convex if for every pair of points x, y ∈ S the line segment
{tx+ (1− t)y : t ∈ [0, 1]} between them is contained in S.

Lemma 13.11. If S ⊆ Rn is a symmetric convex set of volume µ(S) > 2n then S contains
a nonzero element of Zn.

Proof. See Problem Set 6.

Theorem 13.12 (Minkowski Lattice Point Theorem). Let Λ be a lattice in a real
vector space V ' Rn with Haar measure µ. If S ⊆ V is a symmetric convex set such that

µ(S) > 2n covol(Λ)

then S contains a nonzero element of Λ.
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Proof. See Problem Set 6.

Example 13.13. As an application of the Minkowski lattice point theorem, let us prove
Fermat’s Christmas Theorem: an odd prime p is a sum of two integer squares a2 + b2

if and only if p ≡ 1 mod 4.1 The “only if” direction is easy: a2 and b2 must be congruent
to 0 or 1 mod 4, which implies that a2 + b2 cannot be congruent to 3 mod 4.

To prove the “if” direction, let p ≡ 1 mod 4 be prime. The cyclic group F×p has order
p − 1 divisible by 4, so it contains an element α of order 4 whose square must be −1, the
unique element of order 2 in F×p . Let i ∈ [1, p − 1] be a lift of α ∈ Fp ' Z/pZ to Z and
define

Λ := {(x, y) ∈ Z2 : y ≡ ix mod p},

so that x2 + y2 ≡ (x+ iy)(x− iy) ≡ 0 mod p for all x, y ∈ Λ. Then Λ = (1, i)Z + (0, p)Z is
a lattice in R2 with covolume

covol(Λ) =

∣∣∣∣det

[
1 i
0 p

]∣∣∣∣ = p.

The set
S := {v ∈ R2 : ‖v‖ <

√
2p},

is a symmetric convex set in R2 with measure µ(S) = 2πp > 4p = 22 covol(Λ). By Corol-
lary 13.12, S contains a nonzero (a, b) ∈ Λ. Then a2 + b2 ≡ 0 mod p, since (a, b) ∈ Λ and
0 < a2 + b2 < 2p, since (a, b) is a nonzero element of S; therefore a2 + b2 = p.

13.2 The canonical inner product

Let K/Q be a number field with KR := K ⊗Q R ' Rr ×Cs ' Rn and KC := K ⊗Q C ' Cn
and r + 2s = n. We have a sequence of injective homomorphisms of topological groups

OK ↪→ K ↪→ KR ↪→ KC, (3)

which are defined as follows:

• the map OK ↪→ K is an inclusion;

• the map K ↪→ KR = K ⊗Q R is the canonical embedding α 7→ α⊗ 1;

• the map K ↪→ KC is α 7→ (σ1(α), . . . , σn(α)), where HomQ(K,C) = {σ1, . . . , σn},
which factors through the map KR ↪→ KC defined below;

• the map KR ' Rr×Cs ↪→ Cr×C2s ' KC embeds each factor of Rr in a corresponding
factor of Cr via inclusion and each C in Cs is mapped to C×C in C2s via z 7→ (z, z̄).

To better understand the last map, note that each C in Cs arises as R[α] = R[x]/(f) ' C
for some monic irreducible f ∈ R[x] of degree 2, but when we base-change to C the field
R[α] splits into the étale algebra C[x]/(x− α)× C[x]/(x− ᾱ) ' C× C.

If we fix a Z-basis for OK , the image of this basis is a Q-basis for K, an R-basis for KR,
and a C-basis for KC, all of which are vector spaces of dimension n = [K : Q]. We may
thus view the injections in (3) as inclusions of topological groups

Zn ↪→ Qn ↪→ Rn ↪→ Cn.
1In a letter from Fermat to Mersenne dated December 25, 1640 (whence the name) Fermat claimed a

proof of this theorem; as usual, he did not actually supply one, but in this case he almost certainly had one.

18.785 Fall 2015, Lecture #13, Page 4



The ring of integers OK is a lattice in KR ' Rn, which inherits an inner product from
the canonical Hermitian inner product on KC ' Cn defined by

〈(a1, . . . , an), (b1, . . . , bn)〉 :=
n∑
i=1

aib̄i ∈ C.

For elements x, y ∈ K ↪→ KR ↪→ KC the Hermitian inner product can be computed as

〈x, y〉 :=
∑

σ∈HomQ(K,C)

σ(x)σ(y) ∈ R, (4)

which is a real number because the embeddings in HomQ(K,C) are either real or complex
conjugate pairs. The inner product defined in (4) is the canonical inner product on KR (it
applies to all of KR, not just the image of K ↪→ KR). The topology it induces on KR is the
same as the Euclidean topology on Rr×Cs, but the corresponding norm ‖ ‖ has a different
normalization, as we now explain.

If we write the elements of KC ' Cn as vectors (zσ) indexed by σ ∈ HomQ(K,C), we
may identify KR with its image in KC as the set

KR = {(zσ) ∈ KC : z̄σ = zσ̄}.

When σ = σ̄ is a real embedding, z̄σ = zσ̄ ∈ R, while for pairs of conjugate complex
embeddings (σ, σ̄) we get the embedding z 7→ (z, z̄) of C into C × C noted above. Each
vector (zσ) ∈ KR can be written uniquely in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1, . . . , xs + iys, xs − iys), (5)

with wi, yj , zi ∈ R, where each zi corresponds to a zσ with σ = σ̄, and each (xj+iyj , xj−iyj)
corresponds to a complex conjugate pair (zσ, zσ̄) with σ 6= σ̄. The canonical inner product
then becomes

〈z, z′〉 =
r∑
i=1

wiw
′
i + 2

s∑
j=1

(xjx
′
j + yjy

′
j),

and if we normalize the Haar measure µ on KR consistently we will have

µ(S) = 2sµRn(S),

where µRn denotes the standard Lebesgue measure on Rn. Having fixed a normalization of
the Haar measure on KR, we can compute the covolume of the lattice OK in KR.

13.3 Covolumes of ideals

Proposition 13.14. Let K be a number field with ring of integers OK . Then

covol(OK) =
√
|discOK |.

Proof. Let e1, . . . , en ∈ OK be a Z-basis for OK , and let HomQ(K,C) = {σ1, . . . , σn}. Let
A := [σi(ej)]ij ∈ Cn×n. Viewing OK ↪→ KR as a lattice in KR with basis e1, . . . , en, using
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(1) to compute covol(OK)2 = µ(F (e1, . . . , en))2 yields

covol(OK)2 = det[〈ei, ej〉]i,j

= det

[∑
k

σk(ei)σk(ej)

]
i,j

= det(A
t
A)

= detAdetA

= | detA|2,

and by Proposition 11.13, | discOK | = | detA|2 = covol(OK)2.

Recall from Remark 6.12 that for number fields K we view the absolute norm

N : IOK
→ IZ

I 7→ (OK : I)Z

as having image in Q>0 by identifying N(I) = (x) ∈ IZ with |x| ∈ Q>0. For ideals I ⊆ OK
this is just the positive integer [OK : I]; by definition, the norm N(I) is the module index
(OK :I)Z, and for I ⊆ OK this is simply the Z-ideal generated by [OK : I].

Corollary 13.15. Let K be a number field and let I be a nonzero fractional ideal of OK .
Then

covol(I) =
√
| discOK |N(I)

Proof. Let n = [K : Q]. Since covol(bI) = bn covol(I) and N(bI) = bnN(I) for any b ∈ Z≥0,
without loss of generality we may assume I ⊆ OK (replace I with a suitable bI if not).
Applying Propositions 13.9 and 13.14, we have

covol(I) = covol(OK)[OK : I] = covol(OK)N(I) =
√
| discOK |N(I)

as claimed.

13.4 The Minkowski bound

Theorem 13.16 (Minkowski bound). Let K be a number field of degree n = r + 2s with s
complex embeddings. Define the Minkowski constant mK for K as the positive real number

mK :=
n!

nn

(
4

π

)s√
|discOK |.

For every nonzero fractional ideal I of OK there is a nonzero a ∈ I for which

|NK/Q(a)| ≤ mKN(I).

Before proving the theorem we first prove a lemma.

Lemma 13.17. Let K be a number field of degree n = r + 2s with r real and s complex
places. For each t ∈ R>0, the volume of the convex symmetric set

St :=
{

(zσ) ∈ KR :
∑
|zσ| ≤ t

}
⊆ KR

with respect to the normalized Haar measure µ on KR is

µ(St) = 2rπs
tn

n!
.
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Proof. As in (5), we may uniquely write each (zσ) ∈ KR in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1 . . . , xs + iys, xs − iys)

with wi, xj , yj ∈ R. We will have
∑

σ |zσ| ≤ t if and only if

r∑
i=1

|wi|+
s∑
j=1

2
√
|xj |2 + |yj |2 ≤ t. (6)

It follows that
µ(St) = 2sµRn(V ) (7)

where V ⊆ Rn is the region defined by (6) and µRn is the standard Lebesgue measure on Rn.
We now show that the volume of V is a scalar multiple of the volume of the set

U := {(u1, . . . , un) ∈ Rn :
∑

ui ≤ t and ui ≥ 0} ⊆ Rn,

which is µRn(U) = tn/n! (the volume of the standard simplex in Rn scaled by a factor of t).
If we view all the wi, xj , yj as fixed except the last pair (xs, ys), then (xs, ys) ranges over

a disk of some radius d ∈ [0, t] determined by (6). If we replace (xs, ys) with (un−1, un)
ranging over the triangular region bounded by un−1 + un ≤ 2d and un−1, un ≥ 0, we need
to incorporate a factor of π/2 to account for the difference between (2d2)/2 = 2d2 and πd2;
repeat this s times. Similarly, we now hold all but wr fixed and replace wr ranging over
[−d, d] with ur ranging over [0, d], and incorporate a factor of 2 to account for this change
of variable; repeat r times. We then have

µRn(V ) = 2r−sπsµRn(U).

Plugging this into (7) and applying µRn(U) = tn/n! yields

µ(St) = 2rπs
tn

n!

as desired. This completes the proof of the lemma.

Proof of Theorem 13.16. Let I be a nonzero fractional ideal of OK . By Minkowski’s Lattice
Point Theorem (Corollary 13.12) and Corollary 13.15, if we choose t so that

µ(St) > 2n covol(I) = 2n
√
|discOK |N(I),

then St will contain a nonzero element a ∈ I which must satisfy∑
σ

|σ(a)| ≤ t,

where σ ranges over the n elements of HomQ(K,C).
By Lemma 13.17, we want to choose t so that

µ(St) = 2rπs
tn

n!
> 2n

√
| discOK |N(I),

equivalently,

tn >
2n−rn!

πs

√
|discOK |N(I) = n!

(
4

π

)s√
| discOK |N(I) = nnmKN(I).
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Let us now pick t so that
(
t
n

)n
> mKN(I). Recalling that the geometric mean is bounded

above by the arithmetic mean, we have

n

√
|NK/Q(a)| = n

√∏
|σ(a)| ≤ 1

n

∑
|σ(a)| < t

n
,

Thus |NK/Q(a)| <
(
t
n

)n
. If we now take the limit as

(
t
n

)n → mKN(I) from above, we
obtain |NK/Q(a)| ≤ mKN(I) as desired.

13.5 Finiteness of the ideal class group

Recall that the ideal class group PicOK = clOK = IK/PK is the quotient of the ideal
group IK of OK by its subgroup of principal fractional ideals PK .

We now use the Minkowski bound to prove that every ideal class contains a representa-
tive ideal of small norm. It will then follow that the ideal class group is finite.

Theorem 13.18. Let K be a number field. Every ideal class in clOK contains an ideal
I ⊆ OK of absolute norm N(I) ≤ mK , where mK is the Minkowski constant.

Proof. Let [J ] be an ideal class of OK represented by the nonzero fractional ideal J . By
Theorem 13.16, the ideal J−1 contains a nonzero element a for which

|NK/Q(a)| ≤ mKN(J−1) = mK/N(J),

and therefore N(aJ) = |NK/Q(a)|N(J) ≤ mK . We have a ∈ J−1, thus aJ ⊆ J−1J = OK
and aJ is an OK-ideal as desired.

Lemma 13.19. Let K be a number field and let M be a real number. The set of ideals
I ⊆ OK with N(I) ≤M is finite.

Proof 1. As a lattice in KR ' Rn, the additive group OK ' Zn has only finitely many
subgroups I of index m for each positive integer m ≤M , since

(mZ)n ⊆ I ⊆ Zn,

and (mZ)n has finite index mn = [Zn : mZn] = [Z : mZ]n in Zn.

Proof 2. Let I be an ideal of absolute norm N(I) ≤M and let I = p1 · · · pk be its factoriza-
tion into (not necessarily distinct) prime ideals. Then M ≥ N(I) = N(p1) · · ·N(pk) ≥ 2k,
since the norm of each pi is a prime power, and in particular at least 2. It follows that
k ≤ log2M is bounded, independent of I. Each prime ideal p lies above some prime p ≤M ,
of which there are π(M) ≈ M/ logM (here π(x) is the prime counting function), and for
each prime p the number of primes p|p is at most n. Thus there are at most (nπ(M))log2M

ideals of norm at most M , a finite number.

Theorem 13.20. Let K be a number field. The ideal class group of OK is finite.

Proof. By Theorem 13.18, each ideal class is represented by an ideal of norm at most mK ,
and clearly distinct ideal classes must be represented by distinct ideals. By Lemma 13.19,
the number of such ideals is finite.
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Remark 13.21. For imaginary quadratic fields K = Q(
√
−d) it is known that the class

number hK = # clOK tends to infinity as d→∞ ranges over square-free integers. This was
conjectured by Gauss in his Disquisitiones Arithmeticae [2] and proved by Heilbronn [4] in
1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [5].

This implies that there are only a finite number of imaginary quadratic fields with any
particular class number. It was conjectured by Gauss that there are exactly 9 imaginary
quadratic fields with class number one, but this was not proved until the 20th century
by Stark [6] and Heegner [3].2 Complete lists of imaginary quadratic fields for each class
number hK ≤ 100 are now available [7].

The situation for real quadratic fields is quite different; it is generally believed that there
are infinitely many real quadratic fields with class number 1.3

Corollary 13.22. Let K be a number field of degree n with s complex places. Then

| discOK | ≥
(
nn

n!

)2 (π
4

)2s
>

1

2πn

(
πe2

4

)n
.

Proof. The absolute norm of an integral ideal is a positive integer, thus Theorem 13.18
implies mK ≥ 1. Therefore

n!

nn

(
4

π

)s√
|discOK | ≥ 1.

The first lower bound on |discOK | follows from the fact that s ≤ n/2, and the second
follows form the fact

n! ≥
√

2πn
(n
e

)n
for all n ≥ 1, by an explicit version of Stirling’s approximation.

We note that πe2/4 > 5.8, so the minimum value of |discOK | increases exponentially
with n = [K : Q]. The lower bounds for n ∈ [2, 7] given by the corollary are listed below,
along with the least value of |discOK | that actually occurs. As can be seen in the table,
| discOK | appears to grow substantially faster than the corollary suggests. Better lower
bounds can be proved using more advanced techniques.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

lower bound from Corollary 13.22 3 11 46 210 1014 5014
minimum value of | discOK | 3 23 275 4511 92799 2306599

Corollary 13.23. If K is a number field other than Q then |discOK | > 1. In particular,
there is no non-trivial unramified extension of Q.

Proposition 13.24. For M ∈ R>0 the set of number fields K with | discOK | < M is finite.

Proof. Since we know that |discOK | → ∞ as n→∞, it suffices to prove this for each fixed
degree n = [K : Q].

Case 1: Let K be a totally real field (so every place v|∞ is real) with | discOK | < M .
Then r = n and s = 0, so KR ' Rr × Cs = Rn. Consider the convex symmetric set

S := {(x1, . . . , xn) ∈ KR ' Rn : |x1| ≤
√
M and |xi| < 1 for i > 1}.

2Heegner’s 1952 result [3] was essentially correct but contained some gaps that prevented it from being
generally accepted until 1967 when Stark gave a complete proof in [6].

3In fact it is conjectured that hK = 1 for approximately 75.446% of real quadratic fields with prime
discriminant; this follows from the Cohen-Lenstra heuristics [1].
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Then
µ(S) = 2

√
M2n−1 = 2n

√
M > 2n

√
|discOK | = 2n covol(OK),

and by the Minkowski lattice point theorem (Corollary 13.12), S contains a nonzero element
a ∈ OK ⊆ K ↪→ KR that we may write as a = (aσ) = (σ1(a), . . . , σn(a)), where the σi are
the n embeddings of K into C, all of which are real embeddings. We have

|NK/Q(a)| =

∣∣∣∣∣∏
i=1

σi(a)

∣∣∣∣∣ ∈ Z>0,

which must be at least 1, and |a2|, . . . , |an| < 1 so |a1| > 1 > |ai| for i = 2, . . . , n.
We now claim that K = Q(a). If not, each ai = σi(a) would be repeated [K : Q(a)] > 1

times in the vector (a1, . . . , an), since there must be [K : Q(a)] elements of HomQ(K,C)
that fix Q(a), namely, those lying in the kernel of the map HomQ(K,C)→ HomQ(Q(a),C)
induced by restriction. But this is impossible since |a1| > |ai| for i 6= 1.

Now a ∈ OK , so its minimal polynomial is a monic irreducible polynomial f ∈ Z[x] of
degree n. The roots of f(x) correspond to the ai = σi(a) ∈ R which are all bounded in
absolute value; and the coefficients of f(x) are the elementary symmetric functions of the
roots, hence also bounded in absolute value. The coefficients of f are integers, so there
are only finitely many possibilities for f(x), given the bound M , hence only finitely many
totally real number fields K of degree n.

Case 2: K has r real and s > 0 complex places, where n = r + 2s and KR ' Rr × Cs.
Now let

S := {(w1, . . . , wr, x1+iy1, . . . , xs+iys) ∈ KR : |x1| < c
√
M and |wi|, |xj |, |yk| < 1 (j 6= 1)}

with c chosen so that µ(S) > 2n covol(OK) (the exact value of c depends on n but clearly
this can be done). The argument now proceeds as in case 1: we get a nonzero a ∈ OK ∩ S
with K = Q(a), and only a finite number of possible minimal polynomials f ∈ Z[x] for a.

Lemma 13.25. Let K be a number field of degree n. For each prime p ∈ Z we have

vp(discOK) ≤ n(logp n+ 1)− 1.

In particular, vp(discOK) ≤ n(log2 n+ 1)− 1 for all primes p ∈ Z.

Proof. We have

|discOK |p = |NK/Q(DK/Q)|p =
∏
v|p

|DKv/Qp
|v,

where DKv/Qp
denotes the different ideal. It follows from Theorem 12.8 that

vp(discOK) ≤
∑
v|p

(ev − 1 + evvp(ev)),

where ev is the ramification index of Kv/Qp. We have
∑

v|p ev ≤ n, and vp(ev) cannot
exceed logp(n), so

vp(discOK) ≤ n(logp n+ 1)− 1

as claimed.

Remark 13.26. The bound in Lemma 13.25 is tight. It is achieved by K = Q[x]/(xp
e−p),

for example.
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Theorem 13.27 (Hermite). Let S be a finite set of places of Q, and let n ∈ Z>1. The
number of extensions K/Q of degree n unramified outside of S is finite.

Proof. By the lemma, since n is fixed, the valuation vp(discOK) is bounded for each p ∈ S,
so |discOK | is bounded. The theorem then follows from Proposition 13.24.
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