18.783 Elliptic Curves Course Outline, Spring 2017

Below is the sequence of topics planned for the course. Each corresponds to roughly one week of lectures (three hours per week).

1. Introduction

overview, the group law, Weierstrass and Edwards curves.

- 2. Efficient computation integer arithmetic, finite field arithmetic, polynomial arithmetic, root-finding.
- 3. Isogenies and endomorphisms the Frobenius endomorphism, division polynomials, Hasse's theorem.
- 4. Elliptic curves over finite fields point counting, baby-steps giant-steps, Schoof's algorithm.
- 5. **The discrete logarithm problem** ECEDH, Pollard rho, Pohlig-Hellman, generic lower bounds, index calculus.
- 6. **Integer factorization and primality proving** Lenstra ECM, Goldwasser-Killian ECPP, Montgomery curves.

7. Endomorphism rings the dual isogeny, quadratic orders, quaternion algebras, supersingular curves.

- 8. Elliptic curves over over the complex numbers elliptic functions, Eisenstein series, the Weierstrass \wp -function, complex tori, the *j*-function, the uniformization theorem, isogenies.
- 9. Modular curves congruence subgroups, Riemann surfaces, modular functions.
- 10. The theory of complex multiplication ring class fields, Hilbert class polynomials, the CM method.
- 11. **Isogeny graphs** isogeny volcanoes, supersingular isogeny graphs, expanders, SIDH.

12. Divisors and pairings

divisor class groups, the Weil and Tate-Lichtenbaum pairings, Miller's algorithm, pairing-based cryptography.

13. Modular forms and Fermat's Last Theorem *L*-series, Galois representations, modularity, outline of Wiles' proof.