
18.783 Elliptic Curves Spring 2017

Problem Set #7 Due: 04/09/2017

Description

These problems are related to the material covered in Lectures 13-14.

Instructions: Solve problem 1 and then solve one of Problems 2-3. Finally, complete
Problem 4, which is a short survey. Your solutions are to be written up in latex and
submitted as a pdf-file with a filename of the form SurnamePset7.pdf via e-mail to
drew@math.mit.edu by 11:59 p.m. on the date due.

Collaboration is permitted/encouraged, but you must identify your collaborators,
and any references not listed in the course syllabus. The first to spot each non-trivial
typo/error in the problem sets or lecture notes will receive 1-5 points of extra credit.

Problem 1 (20 points). Isogeny invariants

Let α : E1 → E2 be an isogeny of elliptic curves defined over a finite field Fq.

(a) Prove that #E1(Fq) = #E2(Fq). (Hint: show that α ◦ (1− πE1) = (1− πE2) ◦ α).

(b) Prove that E1(Fq) is not necessarily isomorphic to E2(Fq) (give a counterexample).

Now let α : E1 → E2 be an isogeny of elliptic curves defined over Q. By the Mordell-
Weil theorem, E1(Q) and E2(Q) are finitely generated abelian groups, hence of the form
Zr ⊕ T , where r is the rank and T is the finite torsion subgroup.

(c) Prove that E1 and E2 have the same rank.

In contrast to the situation over a finite field, the torsion subgroups of E1(Q) and E2(Q)
need not have the same cardinality. In particular, it may happen that E1(Q) and E2(Q)
are both finite but #E1(Q) 6= #E2(Q).

(d) Given an explicit example of isogenous elliptic curves E1 and E2 over Q for which
E1(Q) and E2(Q) are finite groups with #E1(Q) 6= #E2(Q). You may find the
L-functions and Modular Forms Database helpful.

Problem 2. The Weil conjectures (80 points)

The zeta function of a smooth projective curve C/Fq (or more generally, a projective
variety) is the exponential generating function

ZC(T ) = exp

( ∞∑
n=1

#C(Fqn)Tn

n

)
,

where “exp” denotes the exponential operator in the ring of formal power series F ∈ Q[[t]]
with constant term zero, defined by

exp(F ) :=
∞∑
k=0

F k

k!
.
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The inverse of the exponential operator is given by the formal logarithm1

log(F ) :=
∞∑
n=1

(−1)n+1 (F − 1)n

n
.

The integers #C(Fqn) can be recovered from ZC(T ) via

#C(Fqn) =
1

(n− 1)!

dn

dTn
logZC(T )

∣∣∣
T=0

.

The definition of the zeta function may seem awkward at first glance, but it has many
remarkable properties. Most notably, although it is defined by an infinite power series,
it is actually a rational function.

Theorem 1 (Weil). Let C/Fq be a smooth projective curve of genus g.

(i) (rationality) ZC(T ) = P (T )
(1−T )(1−qT ) for some P ∈ Z[T ] of degree 2g.

(ii) (functional equation) ZC( 1
qT ) = q1−gT 2−2gZC(T )

(iii) (Riemann hypothesis) The roots α1, . . . α2g ∈ C of P (T ) satisfy |αi| = 1/
√
q.

This theorem was conjectured by Emil Artin in 1924 and proved by Weil in 1949.
Weil also proposed generalizations of the three parts of the theorem to smooth projective
varieties of arbitrary dimension; these became known as the Weil conjectures. Many
mathematicians contributed to the proof of the Weil conjectures, including Bernard
Dwork, Michael Artin, Alexander Grothendieck, and Pierre Deligne, who completed the
proof in the 1970’s.2 In this problem you will prove the Weil conjectures for elliptic
curves and derive several useful facts along the way.

The proof relies on various properties of the Frobenius endomorphism, most of which
actually hold for any endomorphism of any elliptic curve E/k, in fact, for any element
of the endomorphism algebra End0(E) := End(E) ⊗Z Q, so we will prove them in this
generality and then apply them to the Frobenius endomorphism of an elliptic curve over
a finite field. So let φ be an arbitrary element of End0(E), and let α, β ∈ C be the roots
of its characteristic polynomial x2 − (Tφ)x+ Nφ.

(a) Show that φ can be written uniquely as φ = φr +φi, with φr ∈ Q, φi ∈ End0(E) and
φ2i = −Nφi. Define re(φ) := φr ∈ R and im(φ) :=

√
Nφi ∈ R, and let Q(φ) denote

the Q-subalgebra of End0(E) generated by φ. Prove that there is a unique field
embedding ι : Q(φ) ↪→ C that maps φ to re(φ) + im(φ)i, and that for all λ ∈ Q(φ)
we have ι(λ̂) = ι(λ), where the bar denotes complex conjugation in C.

(b) Use part (a) to prove that |α| = |β| =
√

Nφ and therefore |Tφ| ≤ 2
√

Nφ.

(c) By applying part (b) to the Frobenius endomorphism π of E/Fq and recalling that
1−π is separable, give a very short proof of Hasse’s theorem: |q+1−#E(Fq)| ≤ 2

√
q.

1These definitions agree with the usual Taylor series expansions; note that log(1 − F ) = −
∑∞

k=1
Fn

n
.

2Deligne was awarded both the Fields medal (1978) and the Abel prize (2013) for this work.
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(d) Prove that for any positive integer n we have Tφn = αn + βn and therefore

N(1− φn) = (Nφ)n + 1− αn − βn.

Deduce that if φ = π is the Frobenius endomorphism of E/Fq, then

#E(Fqn) = qn + 1− αn − βn.

As a quick digression, part (d) implies that for E/Fq we can easily compute #E(Fqn)
once we know #E(Fq). A useful method for doing this is the following recurrence.

(e) Let a0 = 2 and an = qn + 1 − #E(Fqn). Prove that an+2 = a1an+1 − qan for all
n ≥ 0. Conclude that the zeta function ZE(T ) is determined by #E(Fq).

You are now ready to prove the Weil conjectures for elliptic curves.

(f) Prove that

exp

( ∞∑
n=1

N(1− φn)

n
Tn

)
=

1− (Tφ)T + (Nφ)T 2

(1− T )(1− (Nφ)T )
.

By applying this when φ = π is the Frobenius endomorphism of E/Fq, prove that
the rationality statement (i) in Theorem 1 holds with P (T ) = 1 − tr(π)T + qT 2 in
the case that C is the elliptic curve E.

(g) Prove that the functional equation (ii) and Riemann hypothesis (iii) in Theorem 1
hold when C is an elliptic curve.

You may be wondering why ZE(T ) is called a zeta function, and how it relates to
the Riemann zeta function

ζ(s) :=

∞∑
n=1

1

ns
.

The sum on the RHS converges for complex s with real part greater than 1, and it
extends to a unique analytic function ζ(s) that is defined on all of C except for a simple
pole at s = 1. The normalized Riemann zeta function ξ(s) := πs/2Γ(s/2)ζ(s) satisfies
the functional equation3

ξ(s) = ξ(1− s),

and the Riemann hypothesis states that the zeros of ξ(s) all lie on the critical line
{s ∈ C : Re(s) = 1/2}.

For an elliptic curve E/Fq we define

ζE(s) := ZE(q−s).

(h) Prove that ζE(s) = ζE(1− s).

(i) Prove that every zero of ζE(s) lies on the critical line {s ∈ C : Re(s) = 1/2}.
3Here π = 3.1415 . . . and Γ(t) :=

∫∞
0
xt−1e−xdx.
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You may recall that the Riemann zeta function has an Euler product

ζ(s) =
∏
p

(
1− p−s

)−1
,

where p ranges over all primes. The function ζE(s) also has an Euler product that can
be written as a product over points P ∈ E(Fq), but in this product we don’t want to
distinguish points P and Q that are Galois conjugate, meaning that Q = σ(P ) for some
automorphism σ ∈ Gal(Fq/Fq). We thus define the closed point

P := {σ(P ) : σ ∈ Gal(Fq/Fq)}.

The set P is the orbit of P ∈ E(Fq) under the action of Gal(Fq/Fq). It is a finite
set because P is necessarily defined over some finite extension Fqn of Fq. Indeed, if
Fqn is the minimal such extension, then #P = n (because Gal(Fqn/Fq) ' Z/nZ). We
now define N(P ) := #Fqn to be the cardinality of this minimal extension; this is well-
defined because we must have N(Q) = N(P ) whenever Q = P (the action of Gal(Fq/Fq)
necessarily preserves the minimal field of definition).

(j) Prove that

ζE(s) =
∏
P

(
1−N(P )−s

)−1
where P ranges over all closed points of E(Fq).

Problem 3. An elliptic curve with complex multiplication (80 points)

Let E/Q be the elliptic curve defined by

y2 = x3 − 35x− 98.

We wish to consider the endomorphism φ(x, y) =
(
u(x)
v(x) ,

s(x)
t(x) y

)
, where

u(x) = 2x2 + (7−
√
−7)x+ (−7− 21

√
−7),

v(x) = (−3 +
√
−7)x+ (−7 + 5

√
−7),

s(x) = 2x2 + (14− 2
√
−7)x+ (28 + 14

√
−7),

t(x) = (5 +
√
−7)x2 + (42 + 2

√
−7)x+ (77− 7

√
−7).

The following block of sage code represents φ = (uv ,
s
t ) as a pair of rational functions

in x, with the factor y in the second coordinate implicit. It then verifies that φ is an
endomorphism of E by checking that its coordinate functions satisfy the curve equation
y2 = f(x) = x3 − 35x− 98:

R.<t>=PolynomialRing(Rationals())
N.<d>=NumberField(tˆ2+7)
F.<x>=PolynomialRing(N)
u=2*xˆ2 + (-d + 7)*x -(7+21*d)
v=(-3+d)*x +(-7+5*d)
s=2*xˆ2 + (-2*d + 14)*x + (14*d + 28)
t=(5+d)*xˆ2 + (42+2*d)*x + (77-7*d)
phi = (u/v,s/t)
f=xˆ3-35*x-98
assert phi[1]ˆ2*f == f.subs(phi[0])
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Note: on the LHS of the assert we also squared the implicit y and replaced y2 by f(x).

(a) Determine the characteristic polynomial of φ.

(b) Let p be a prime of good reduction for E. Prove that the reduction of E at p is

supersingular if the Legendre symbol
(
−7
p

)
is −1 and ordinary otherwise.

(c) Determine EndQ(E). Be sure to justify your answer.

(d) Let p be the least prime greater than the last two digits of your student ID where
E has supersingular reduction. Prove that the endomorphism algebra of E mod p
is a quaternion algebra Q(α, β) with α2, β2 < 0 and αβ = −βα. Give α2 and β2

explicitly, and express α and β in terms of φ and the Frobenius endomorphism π.

(e) Prove that every prime p where E has ordinary reduction satisfies the norm equation

4p = t2 + 7v2,

where t = trπ is the trace of Frobenius and v is a positive integer.

(f) Find a pair of primes p, q > 2512 for which the reduction Ep of E modulo p has
exactly 4q rational points. Be sure to format your answer so that the primes p and q
both fit on the page (line wrapping is fine).

(g) Describe a probabilistic algorithm that, given a sufficiently large integer n, outputs
two integers p and q that have passed 100 Miller Rabin tests with p ∈ [2n, 2n+1]
such that if p is prime, then #Ep(Fp) = 4q (we can be morally certain that both p
and q are in prime, but the algorithm is not required to guarantee this).

Under the heuristic model that each integer m is prime with probability 1/ logm,
bound the expected running time of your algorithm and compare it an alternative
approach that generates random curves and counts points using Schoof’s algorithm
(your algorithm should be significantly faster; in fact, it is faster than any method
known for proving the primality of a general n-bit integer — this is why we do not
want to require the algorithm to guarantee that p and q are prime).4

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,”
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 =
“brutal”). Also estimate the amount of time you spent on each problem to the nearest
half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

4There are randomized primality proving algorithms with heuristic running times that are similar up
to a polylogarithmic factor in n, but this polylogarithmic factor is significant and the space complexity
is much worse.
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Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/3 Ordinary and supersingular curves

4/5 Elliptic curves over C (part 1)

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.
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