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5 Isogenies

In almost every branch of mathematics, when considering a category of mathematical ob-
jects with a particular structure, the maps between objects that preserve this structure
(morphisms) play a crucial role. For groups and rings we have homomorphisms, for vector
spaces we have linear transformations, and for topological spaces we have continuous func-
tions. For elliptic curves (and more generally, abelian varieties), the structure-preserving
maps are called isogenies.1

5.1 Morphisms of projective curves

As abelian varieties, elliptic curves have both an algebraic structure (as an abelian group),
and a geometric structure (as a smooth projective curve). We are all familiar with morphisms
of groups (these are group homomorphisms), but we have not formally defined a morphism
of projective curves. To do so we need to define a few notions from algebraic geometry.
Since algebraic geometry is not a prerequisite for this course, we will take a brief detour to
define the terms we need. To keep things as simple and concrete as possible, we will focus
on plane projective curves with a few remarks along the way about how to generalize these
definitions for those who are interested (those who are not can safely ignore the remarks).
As usual, we use k̄ to denote a fixed algebraic closure of our base field k that contains any
and all algebraic extensions of k that we may consider.

Definition 5.1. Let C/k be a plane projective curve f(x, y, z) = 0 with f ∈ k[x, y, z]
irreducible in k̄[x, y, z]. The function field k(C) consists of rational functions g/h, where
(i) g and h are homogeneous polynomials in k[x, y, z] of the same degree.
(ii) h is not divisible by f , equivalently, h is not an element of the ideal (f).
(iii) g1/h1 and g2/h2 are considered equivalent whenever g1h2 − g2h1 ∈ (f).

If L is any algebraic extension of k (including L = k̄), the function field L(C) is similarly
defined with g, h ∈ L[x, y, z].

Remark 5.2. The function field k(X) of an (irreducible) projective variety X/k given by
homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn] is defined similarly, just replace the
ideal (f) with the ideal (f1, . . . , fm).

Be sure not to confuse the notation k(C) with C(k); the latter denotes the set of k-
rational points on C, not its function field.

We claim that k(C) is a ring under addition and multiplication of rational functions.
To see this, first note that if h1, h2 6∈ (f) then h1h2 6∈ (f) because f is irreducible and
k[x, y, z] is a unique factorization domain (in particular, (f) is a prime ideal). Thus for any
g1/h1, g2/h2 ∈ k(C) we have

g1
h1

+
g2
h2

=
g1h2 + g2h1

h1h2
∈ k(C) and

g1
h1
· g2
h2

=
g1g2
h1h2

∈ k(C).

We can compute the inverse of g/h as h/g except when g ∈ (f), but in this case g/h is
equivalent to 0/1 = 0, since g · 1 − 0 · h = g ∈ (f); thus every nonzero element of k(C) is

1The word isogeny literally means “equal origins". It comes from biology, where the terms isogenous,
isogenic, and isogenetic refer to different tissues derived from the same progenitor cell. The prefix “iso"
means equal and the root “gene" means origin (as in the word genesis).
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invertible, hence the ring k(C) is a field. The field k(C) contains k as a subfield (take g and
h with degree 0), but it is not an algebraic extension of k, it is transcendental; indeed, it has
transcendence degree 1, consistent with the fact that C is a projective variety of dimension 1
(this is one way to define the dimension of an algebraic variety).

The fact that g and h have the same degree allows us to meaningfully assign a value to
the function g/h at a projective point P = (x : y : z) on C, so long as h(P ) 6= 0, since

(a) we get the same result for any projectively equivalent P = (λx : λy : λz) with λ ∈ k×,
because g and h are homogeneous of the same degree (say d):

g(λx, λy, λz)

h(λx, λy, λz)
=
λdg(x, y, z)

λdh(x, y, z)
=
g(x, y, z)

h(x, y, z)
.

(b) if g1/h1 and g2/h2 are equivalent with h1(P ), h2(P ) 6= 0, then g1(P )h2(P )−g2(P )h1(P )
is a multiple of f(P ) = 0, so (g1/h1)(P ) = (g2/h2)(P ).

Thus assuming the denominators involved are all nonzero, the value of α(P ) does not depend
on how we choose to represent either α or P . If α = g1/h1 with h1(P ) = 0, it may happen
that g1/h1 is equivalent to some g2/h2 with h2(P ) 6= 0. This is a slightly subtle point. It
may not be immediately obvious whether or not such a g2/h2 exists, since it depends on
equivalence modulo f ; in general there may be no canonical way to write g/h in “simplest
terms", because the ring k[x, y, z]/(f) is typically not a unique factorization domain.

Example 5.3. Suppose C/k is defined by f(x, y, z) = zy2−x3− z2x = 0, and consider the
point P = (0 : 0 : 1) ∈ C(k). We can’t evaluate α = 3xz/y2 ∈ k(C) at P as written since
its denominator vanishes at P , but we can use the equivalence relation in k(C) to write

α =
3xz

y2
=

3xz2

x3 + z2x
=

3z2

x2 + z2
,

and we then see that α(P ) = 3.

Definition 5.4. Let C/k be a projective curve with α ∈ k(C). We say that α is defined (or
regular) at a point P ∈ C(k̄) if α can be represented as g/h for some g, h ∈ k[x, y, z] with
h(P ) 6= 0.

Remark 5.5. If C is the projective closure of an affine curve f(x, y) = 0, one can equiv-
alently define k(C) as the fraction field of k[x, y]/(f); this ring is known as the coordinate
ring of C, denoted k[C], and it is an integral domain provided that (f) is a prime ideal
(which holds in our setting because we assume f is irreducible). In this case one needs to
homogenize rational functions r(x, y) = g(x, y)/h(x, y) in order to view them as functions
defined on projective space. This is done by introducing powers of z so that the numera-
tor and denominator are homogeneous polynomials of the same degree. The same remark
applies to (irreducible) varieties of higher dimension.

We can now formally define a rational map of projective curves. Recall that for any
field F , including F = k(C), we use P2(F ) to denote the the set of projective triples (x : y : z)
with x, y, z ∈ F not all zero, with the equivalence relation (x : y : z) ∼ (λx : λy : λz) for all
λ ∈ F×.
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Definition 5.6. Let C1 and C2 be plane projective curves defined over k. A rational map
φ : C1 → C2 is a projective triple (φx : φy : φz) ∈ P2(k(C)), such that for every point
P ∈ C1(k̄) where φx(P ), φy(P ), φz(P ) are defined and not all zero, the projective point
(φx(P ) : φy(P ) : φz(P )) lies in C2(k̄). The map C1 is defined (or regular) at P if there
exists λ ∈ k(C)× such that λφx, λφy, λφz are all defined at P and not all zero at P .

Remark 5.7. This definition generalizes to projective varieties in Pn in the obvious way.

We should note that a rational map is not simply a function from C1(k) to C2(k) defined
by rational functions, for two reasons. First, it might not be defined everywhere (although
for smooth projective curves this does not happen, by Theorem 5.10 below). Second, it is
required to map C1(k̄) to C2(k̄), which does not automatically hold for every rational map
the carries C1(k) to C2(k); indeed, in general C1(k) could be the empty set (if C1 is an
elliptic curve then C1(k) is nonempty, but it could contain just a single point).

Remark 5.8. This is a general feature of classical algebraic geometry. In order for the
definitions to work properly, one must consider the situation over an algebraic closure; an
alternative approach is to use schemes, but we will not use schemes in this course.

It is important to remember that a rational map φ = (φx : φy : φz) is defined only up
to scalar equivalence by functions in k(C)×. There may be points P ∈ C1(k̄) where one of
φx(P ), φy(P ), φz(P ) is not defined or all three are zero, but it may still possible to evaluate
φ(P ) after rescaling by λ ∈ k(C)×; we will see an example of this shortly.

The value of φ(P ) is unchanged if we clear denominators in (φx : φy : φz) by multiplying
through by an appropriate homogeneous polynomial (note: this is not the same as rescaling
by an element of λ ∈ K(C)×). This yields a triple (ψx : ψy : ψz) of homogeneous polynomials
of equal degree that we view as a representing any of the three equivalent rational maps

(ψx/ψz : ψy/ψz : 1), (ψx/ψy : 1 : ψz/ψy), (1 : ψy/ψx : ψz/ψx),

all of which are equivalent to φ. We then have φ(P ) = (ψx(P ) : ψy(P ) : ψz(P ) whenever any
of ψx, ψy, ψz is nonzero at P . Of course it can still happen that ψx, ψy, ψz all vanish at P ,
in which case we might need to look for an equivalent tuple of homogeneous polynomials
that represents φ, but with this representation at least ψx, ψy, ψz are always defined at P .

Definition 5.9. A rational map that is defined everywhere is called a morphism

For elliptic curves, distinguishing rational maps from morphisms is unnecessary; every
rational map between elliptic curves is a morphism. More generally, we have the following.

Theorem 5.10. If C1 is a smooth projective curve then every rational map from C1 to a
projective curve C2 is a morphism.

The proof of this theorem is straight-forward (see [2, II.2.1]), but requires some commu-
tative algebra that we don’t want to introduce here.2

Remark 5.11. Theorem 5.10 is specific to smooth curves, it is not true more generally.
2The key point is that the coordinate ring of a smooth curve is a Dedekind domain. Thus its localization

at every point P is a DVR, and after choosing a uniformizer we can rescale any rational map φ by a suitable λ
(which will typically vary with P ) so that all the components of φ have non-negative valuation at P and at
least one has valuation zero and is therefore nonvanishing at P .
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Two projective curves C1 and C2 are isomorphic if they are related by an invertible
morphism φ; this means that there is a morphism φ−1 such that φ−1 ◦φ and φ ◦φ−1 are the
identity maps on C1(k̄) and C2(k̄), respectively. An isomorphism φ : C1 → C2 is necessarily
a morphism that defines a bijection from C1(k̄) from C2(k̄), but the converse is not true,
in general, because the inverse map of sets from C2(k̄) to C1(k̄) might not be a morphism
(because it can’t be defined by rational functions); we will see an example of this shortly.

Before leaving the topic of morphisms of curves, we note one more useful fact.

Theorem 5.12. A morphism of projective curves is either surjective or constant.

This theorem is a consequence of the fact that projective varieties are complete (or
proper), which implies that the image of a morphism of projective varieties is itself a projec-
tive variety. This is a standard result that is proved in most of algebraic geometry textbooks,
such as [1, II.4.9], for example. In the case of projective curves the image of a morphism
φ : C1 → C2 of curves either has dimension 1, in which case φ is surjective (our curves are ir-
reducible, by definition, and therefore cannot properly contain another curve), or dimension
0, in which case the image is a single point and φ is constant.

5.2 Isogenies of elliptic curves

We can now define the structure preserving maps between elliptic curves that will play a
key role in this course.

Definition 5.13. An isogeny φ : E1 → E2 of elliptic curves defined over k is a surjective
morphism of curves that induces a group homomorphism E1(k̄)→ E2(k̄). The elliptic curves
E1 and E2 are then said to be isogenous.

Remark 5.14. Unless otherwise stated, we assume that the isogeny φ is itself defined
over k (meaning that it can be represented by a rational map whose coefficients lie in k). In
general, if L/k is an algebraic extension, we say that two elliptic curves defined over k are
“isogenous over L" if they are related by an isogeny that is defined over L. Strictly speaking,
in this situation we are really referring to the “base change" of the elliptic curves to L (same
equations, different field of definition), but we won’t be pedantic about this.

This definition is stronger than is actually necessary, for three reasons. First, any mor-
phism of abelian varieties that preserves the identity element (the distinguished point that
is the zero element of the group) induces a group homomorphism; we won’t bother to prove
this (see [2, Theorem III.4.8] for a proof), since for all the isogenies we are interested in
it will be obvious that they are group homomorphisms. Second, by Theorem 5.12, any
non-constant morphism of curves is surjective, and third, by Theorem5.10, a rational map
whose domain is a smooth projective curve is automatically a morphism. This leads to the
following equivalent definition which is commonly used.

Definition 5.15. An isogeny φ : E1 → E2 of elliptic curves defined over k is a non-constant
rational map that sends the distinguished point of E1 to the distinguished point of E2.

Warning 5.16. Under our definitions the zero morphism, which maps every point on E1

to the zero point of E2, is not an isogeny. This follows the standard convention for general
abelian varieties which requires isogenies to preserve dimension (so they must be surjective
and have finite kernel). In the case of elliptic curves this convention is not always followed
(notably, Silverman [2, III.4] includes the zero morphism in his definition of an isogeny), but
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it simplifies the statement of many theorems and is consistent with the more general usage
you may see in later courses, so we will use it (we will still have occasion to refer to the zero
morphism, we just won’t call it an isogeny).

Definition 5.17. Elliptic curves E1 and E2 defined over a field k are isomorphic if their exist
isogenies φ1 : E1 → E2 and φ2 : E2 → E1 whose composition is the identity; the isogenies
φ1 and φ2 are then isomorphisms.

Definition 5.18. Amorphism from an elliptic curve E/k to itself that fixes the distinguished
point is called an endomorphism. An endomorphism that is also an isomorphism is an
automorphism.

Except for the zero morphism, every endomorphism is an isogeny. As we shall see in the
next lecture, the endomorphisms of an elliptic curve have a natural ring structure.

5.3 Examples of isogenies

We now give three examples of isogenies that are endomorphisms of an elliptic curve E/k
defined by a short Weierstrass equation y2 = x3 +Ax+ b (we assume char(k) 6= 2, 3).

5.3.1 The negation map

In projective coordinates the map P 7→ −P is given by

(x : y : z) 7→ (x : −y : z),

which is evidently a rational map. It is defined at every projective point, and in particular,
at every P ∈ E(k̄), so it is a morphism (as it must be, since it is a rational map defined
on a smooth curve). It fixes 0 = (0 : 1 : 0) and is not constant, thus it is an isogeny. It is
also an endomorphism, since it is a morphism from E to E that fixes 0, and moreover an
isomorphism (it is its own inverse), and therefore an automorphism.

5.3.2 The multiplication-by-2 map

Let E/k be the elliptic curve defined by y2 = x3 +Ax+B, and let φ : E → E be defined by
P 7→ 2P . This is obviously a non-trivial group homomorphism (at least over k̄), and we will
now show that it is a morphism of projective curves. Recall that the formula for doubling
an affine point P = (x, y) on E is given by the rational functions

φx(x, y) = m(x, y)2 − 2x =
(3x2 +A)2 − 8xy2

4y2
,

φy(x, y) = m(x, y)(x− φx(x, y))− y =
12xy2(3x2 +A)− (3x2 +A)3 − 8y4

8y3
,

where m(x, y) := (3x2 + A)/(2y) is the slope of the tangent line at P . Homogenizing these
and clearing denominators yields the rational map φ := (ψx/ψz : ψy/ψz : 1), where

ψx(x, y, z) = 2yz((3x2 +Az2)2 − 8xy2z),

ψy(x, y, z) = 12xy2z(3x2 +Az2)− (3x2 +Az2)3 − 8y4z2,

ψz(x, y, z) = 8y3z3.
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If y = 0 then 3x2 +Az2 6= 0 (because y2z = x3 +Axz2 +Bz3 is non-singular), and it follows
that the only point in E(k̄) where ψx, ψy, ψz simultaneously vanish is the point 0 = (0 : 1 : 0).
As a rational map of smooth projective curves, we know that φ is a morphism, hence defined
everywhere, so there must be an alternative representation of φ that we can evaluate at the
point 0. Now in fact we know a priori that φ(0) must be 0, since 2 · 0 = 0 but let’s verify
this explicitly.

In projective coordinates the curve equation is f(x, y, z) := y2z − x3 −Axz2 −Bz3 = 0.
We are free to add any multiple of f in k[x, y, z] of the correct degree (in this case 6) to any
of ψx, ψy, ψz without changing the rational function φ they define. Let us replace ψx with
ψx + 18xyzf and ψy with ψy + (27f − 18y2z)f , and remove the common factor z2 to obtain

ψx(x, y, z) = 2y(xy2 − 9Bxz2 +A2z3 − 3Ax2z),

ψy(x, y, z) = y4 − 12y2z(2Ax+ 3Bz)−A3z4

+ 27Bz(2x3 + 2Axz2 +Bz3) + 9Ax2(3x2 + 2Az2),

ψz(x, y, z) = 8y3z.

This is another representation of the rational map φ, and we can use this representation of
φ to evaluate φ(0) = (ψx(0, 1, 0) : ψy(0, 1, 0) : ψz(0, 1, 0)) = (0 : 1 : 0) = 0, as expected.

Having seen how messy things can get even with the relatively simply isogeny P 7→ 2P ,
in the future we will be happy to omit such verifications and rely on the fact that if we have
a rational map that we know represents an isogeny φ, then φ(0) = 0 must hold. For elliptic
curves in Weierstrass form, this means we only have to worry about evaluating isogenies at
affine points, which allows us to simplify the equations by fixing z = 1.

5.3.3 The Frobenius endomorphism

Let Fp be a finite field of prime order p. The Frobenius automorphism π : Fp → Fp is the map
x 7→ xp. It is easy to check that π is a field automorphism: 0p = 0, 1p = 1, (−a)p = −ap,
(a−1)p = (ap)−1, (ab)p = apbp, and (a + b)p =

∑(
p
k

)
akbp−k = ap + bp. If f(x1, . . . , xk) is

any rational function with coefficients in Fp, then

f(x1, . . . , xk)p = f(xp1, . . . , x
p
k),

since the coefficients of f are all fixed by π, which acts trivially on Fp.
Every power πn of π is also an automorphism of Fp; the fixed field of πn is the finite

field Fpn with pn elements. For a finite field Fq = Fpn the map x 7→ xq is called the q-power
Frobenius map, which we may denote by πq.

Definition 5.19. Let E be an elliptic curve over a finite field Fq. The Frobenius endomor-
phism of E is the map πE : (x : y : z) 7→ (xq : yq : zq).

To see that this defines a morphism form E to E, for any point P = (x, y, z) ∈ E(Fq),
if we raise both sides of the curve equation

y2z = x3 +Axz2 +Bz3

to the qth power, we get

(y2z)q = (x3 +Axz2 +Bz3)q

(yq)2zq = (xq)3 +Axq(zq)2 +B(zq)3,
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thus (xq : yq : zq) ∈ E(Fq); we have Aq = A and Bq = B because A,B ∈ Fq. Note that
if q 6= p and use the p-power Frobenius we still get a point on an elliptic curve, namely
y2 = x3 +Apx+Bp, but this curve is not the same as E (or even isomorphic to E).

To see that πE is also a group homomorphism, note that the group law on E is defined
by rational functions whose coefficients lie in Fq; these coefficients are invariant under the
q-power map, so πE(P +Q) = πE(P ) + πE(Q) for all P,Q ∈ E(Fq).

These facts holds regardless of the equation used to define E and the formulas for the
group law, including curves defined by a general Weierstrass equation (which is needed in
characteristic 2 and 3).

Remark 5.20. The Frobenius endomorphism induces a group isomorphism from E(Fq)
to E(Fq), since over the algebraic closure we can take qth roots of coordinates of points,
and doing so still fixes elements of Fq (in other words, the inverse of πq in Gal(Fq/Fq) also
commutes with the group operation). But as an isogeny the Frobenius endomorphism is not
an isomorphism because there is no rational map from E → E that acts as its inverse (why
this is so will become obvious in later lectures).

5.4 A standard form for isogenies

To facilitate our work with isogenies, it will be convenient to put them in a standard form.
In order to do so we will assume throughout that we are working with elliptic curves in short
Weierstrass form y2 = x3 + Ax + B. Implicit in this assumption is that our elliptic curves
are defined over a field k whose characteristic is not 2 or 3.3

Lemma 5.21. Let E1 and E2 be elliptic curves over k in short Weierstrass form, and let
α : E1 → E2 be an isogeny. Then α can be defined by an affine rational map of the form

α(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
,

where u, v, s, t ∈ k[x] are polynomials in x with u ⊥ v and s ⊥ t.

The notation f ⊥ g indicates that the polynomials f and g are coprime in k[x] (equiva-
lently, they have no common roots in k̄).

Proof. Suppose α is defined by the rational map (αx : αy : αz). Then for any affine point
(x : y : 1) ∈ E1(k̄) we can write

α(x, y) =
(
r1(x, y), r2(x, y)

)
,

with r1(x, y) := αx(x, y, 1)/αz(x, y, 1) and r2(x, y) := αy(x, y, 1)/αz(x, y, 1). By repeatedly
using the curve equation y2 = x3 +Ax+B for E1 to replace y2 with a polynomial in x, we
can assume that both r1 and r2 have degree at most 1 in y. We then have

r1(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y
,

3In fact everything in this section works without modification for elliptic curves of the form y2 = f(x),
even if the quadratic term of f(x) is nonzero, so we only need to assume the characteristic is not 2.
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for some p1, p2, p3, p4 ∈ k[x]. We now multiply the numerator and denominator of r1(x, y)
by p3(x)− p4(x)y, and use the curve equation for E1 to replace y2 in the denominator with
a polynomial in x, putting r1 in the form

r1(x, y) =
q1(x) + q2(x)y

q3(x)
,

for some q1, q2, q3 ∈ k[x].
We now use the fact that α is a group homomorphism and must therefore satisfy α(−P ) =

−α(P ) for any P ∈ E1(k̄). Recall that the inverse of an affine point (x, y) on a curve in
short Weierstrass form is (x,−y). Thus α(x,−y) = −α(x, y) and we have(

r1(x,−y), r2(x,−y)
)

=
(
r1(x, y),−r2(x, y)

)
Thus r1(x, y) = r1(x,−y), and this implies that q2 is the zero polynomial. After eliminating
any common factors from q1 and q3, we obtain r1(x, y) = u(x)

v(x) for some u, v ∈ k[x] with u ⊥ v,
as desired. The argument for r2(x, y) is similar, except now we use r2(x,−y) = −r2(x, y) to
show that q1 must be zero, yielding r2(x, y) = s(x)

t(x) y for some s, t ∈ k[x] with s ⊥ t.

We shall refer to the expression α(x, y) = (u(x)v(x) ,
s(x)
t(x) y) given by Lemma 5.21 as the

standard form of an isogeny α : E1 → E2. The fact that the rational functions u(x)/v(x)
and s(x)/t(x) are in lowest terms implies that the polynomials u, v, s and t are uniquely
determined up to a scalar in k×.

Lemma 5.22. Let E1 : y2 = f1(x) and E2 : y2 = f2(x) be elliptic curves over k and let
α(x, y) = (u(x)v(x) ,

s(x)
t(x) y) be an isogeny from E1 to E2 in standard form. Then v3 divides t2

and t2 divides v3f1. Moreover, v(x) and t(x) have the same set of roots in k̄.

Proof. Substituting
(
u
v ,

s
t y
)
for (x, y) in the equation for E2 gives ((s/t)y)2 = f2(u/v), and

using the equation for E1 to replace y2 with f2(x) yields

(s/t)2f1 = (u/v)3 +A2(u/v) +B2

as an identity involving polynomials f1, s, t, u, v ∈ k[x]. If we put w = u3 + A2uv
2 + B2v

3

and clear denominators we obtain
v3s2f1 = t2w. (1)

Note that u ⊥ v implies v ⊥ w, since any common factor of v and w must divide u. It
follows that v3|t2 and t2|v3f1. This implies that v and t have the same roots in k̄: every
root of v is clearly a root of t (since v3|t2), and every root x0 of t is a double root of t2|v3f1,
and since f1 has no double roots (because E1 is not singular), x0 must be a root of t (and
possibly also a root of f1).

Corollary 5.23. Let α(x, y) = (u(x)v(x) ,
s(x)
t(x) y) be an isogeny E1 → E2 in standard form. The

affine points (x0 : y0 : 1) ∈ E1(k̄) in the kernel of α are precisely those for which v(x0) = 0.

Proof. If v(x0) 6= 0, then t(x0) 6= 0, and α(x0, y0) = (u(x0)
v(x0)

, s(x0)
t(x0)

y) is an affine point and
therefore not 0 (the point at infinity), hence not in the kernel of α.

By homogenizing and putting α into projective form, we can write α as

α = (ut : vsy : vt),
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where ut, vsy, and vt are now homogeneous polynomials of equal degree (s, t, u, v ∈ k[x, z]).
Suppose y0 6= 0. By the previous lemma, if v(x0, 1) = 0, then t(x0, 1) = 0, and since

v3|t2, the multiplicity of (x0, 1) as a root of t is strictly greater than its multiplicity as a
root of v. This implies that, working over k̄, we can renormalize α by dividing by a suitable
power of x − x0z so that αy does not vanish at (x0 : y0 : 1) but αx and αz both do. Then
α(x0 : y0 : 1) = (0 : 1 : 0) = 0, and (x0 : y0 : 1) lies in the kernel of α as claimed.

If y0 = 0, then x0 is a root of the cubic f(x) in the equation y2 = f1(x) for E1, and it
is not a double root, since E1 is not singular. In this case we renormalize α by multiplying
by yz and then replacing y2z with f1(x, z). Because (x0, 1) only has multiplicity 1 as a root
of f1(x, z), its multiplicity as a root of vf1 is no greater than its multiplicity as a root of t
(here again we use v3|t2), and we can again renormalize α by dividing by a suitable power
of x− x0z so that αy does not vanish at (x0 : y0 : 1), but αx and αz do (since they are now
both divisible by y0 = 0). Thus (x0 : y0 : 1) is again in the kernel of α.

The corollary implies that if we have an isogeny α : E1 → E2 in standard form, we know
exactly what to do if whenever we get a zero in the denominator when we try to compute
α(P ): we must have α(P ) = 0. This allows us to avoid in all cases the messy process that
we went through earlier with the multiplication-by-2 map. We also obtain the following.

Corollary 5.24. Let α : E1 → E2 be an isogeny of elliptic curves defined over a field k.
The kernel of α is a finite subgroup of E1(k̄)

This corollary is true in general, but we will prove it under the assumption that we can
put the isogeny α in our standard form (so char(k) 6= 2).

Proof. If we put α in standard form (uv ,
s
t y) then the polynomial v(x) has at most deg v

distinct roots in k̄, each of which can occur as the x-coordinate of at most two points on the
elliptic curve E1.

Remark 5.25. Note that this corollary would not be true if we included the zero morphism
in our definition of an isogeny.

One can also use the standard form of an isogeny α : E1 → E2 to show that α is surjective
as a map from E1(k̄) to E2(k̄); see [3, Thm. 2.22].4 But we already know that this applies
to any non-constant morphism of curves (and even included surjectivity in our original
definition of an isogeny), so we won’t bother to prove this.

5.5 Degree and separability

We now define two important invariants of an isogeny that can be easily determined when
it is in standard form.

Definition 5.26. Let α(x, y) = (u(x)v(x) ,
s(x)
t(x) y) be an isogeny in standard form. The degree of

α is degα := max{deg u,deg v}, and we say that α is separable if the derivative of u(x)
v(x) is

nonzero; otherwise we say that α is inseparable.

As noted earlier, the polynomials u, v, s, t are uniquely determined up to a scalar factor, so
the degree and separability of α are intrinsic properties that do not depend on its represen-
tation as a rational map.

4The theorem in [3] assumes that α is an endomorphism but the proof works for any isogeny.
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Remark 5.27. The degree and separability of an isogeny can defined in a way that is more
obviously intrinsic using function fields. If α : E1 → Ek is an isogeny of elliptic curves
defined over k then it induces an injection of function fields

α∗ : k(E2)→ k(E1)

that sends f to f ◦ α (notice the direction of this map; the categorical equivalence between
smooth projective curves and their function fields is contravariant). The degree of α is then
the degree of k(E1) as an extension of the subfield α∗(k(E2)); this degree is finite because
both are finite extensions of a purely transcendental extension of k The isogeny α is then
said to be separable if this field extension is separable (and is inseparable otherwise). This
approach has the virtue of generality, but it is not as easy to apply explicitly. Our definition
is equivalent, but we won’t prove this.

Let us now return to the three examples that we saw earlier.

• The standard form of the negation map is α(x, y) = (x,−y). It is separable and has
degree 1.

• The standard form of the multiplication-by-2 isogeny is

α(x, y) =

(
x4 − 2Ax2 − 8Bx+A2

4(x3 +Ax+B)
,
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2

8(x3 +Ax+B)2
y

)
.

It is separable and has degree 4.

• The standard form of the Frobenius endomorphism of E/Fq is

πE(x, y) =
(
xq, (x3 +Ax+B)(q−1)/2y

)
.

Note that we have used the curve equation to transform yq (and q is odd because we
are not in characteristic 2). It is inseparable, because (xq)′ = qxq−1 = 0 in Fq (since q
must be a multiple of the characteristic p), and it has degree q.
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