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3 Finite fields and integer arithmetic

In order to perform explicit computations with elliptic curves over finite fields, we first need
to understand arithmetic in finite fields. In many of the applications we will consider, the
finite fields involved will be quite large, so it is important to understand the computational
complexity of finite field operations. This is a huge topic, one to which an entire course could
be devoted, but we will spend just one week on finite field arithmetic (this lecture and the
next), with the goal of understanding the most commonly used algorithms and analyzing
their asymptotic complexity. This will force us to omit many details.

The first step is to fix an explicit representation of finite field elements. This might seem
like a technical detail, but it is actually quite crucial; questions of computational complexity
are meaningless otherwise.

Example 3.1. As we will prove shortly, the multiplicative group of a finite field is cyclic. So
one way to represent the nonzero elements of a finite field explicit powers of a fixed generator
(so it is enough to specify just the exponent). With this representation multiplication and
division are easy, solving the discrete logarithm problem is trivial, but addition is hard.
We will instead choose a representation that makes addition (and subtraction) very easy,
multiplication slightly harder but still easy, division slightly harder than multiplication but
still easy (all these operations take quasi-linear time). But solving the discrete logarithm
problem will be hard (no polynomial-time algorithm is known).

For they sake of brevity, we will focus primarily on finite fields of large characteristic, and
prime fields in particular, although the algorithms we describe will work in any finite field
of odd characteristic. Fields of characteristic 2 are quite important in practical applications
(coding theory in particular), and there are many specialized algorithms that are optimized
for such fields, but we will not address them here.1

3.1 Finite fields

We begin with a quick review of some basic facts about finite fields, all of which are straight-
forward but necessary for us to establish a choice of representation; we will also need them
when we discuss algorithms for factoring polynomials over finite fields in the next lecture.2

Definition 3.2. For each prime p we define Fp to be the quotient ring Z/pZ.

Theorem 3.3. The ring Fp is a field, and every field of characteristic p contains a canonical
subfield isomorphic to Fp. In particular, all fields of cardinality p are isomorphic.

Proof. For any a 6≡ 0 mod p we have gcd(a, p) = 1, and the extended Euclidean algorithm
allows us to compute u, v ∈ Z such that ua + vp = 1. We have ua ≡ 1 mod p, and this
shows that every nonzero element of Z/pZ has a multiplicative inverse, which makes the
commutative ring Z/pZ a field. In any field of characteristic p the set {0, 1, 1 + 1, . . .} is a
subring isomorphic to Z/pZ = Fp.

1With the recent breakthrough in computing discrete logarithms in finite fields of small characteristic [1] in
quasi-polynomial time, there is less enthusiasm for using these fields in elliptic curve cryptography, although
in principle this should only impact curves with small embedding degree (so-called “pairing-friendly" curves).

2For students already familiar with this material, I recommend the following exercise: write down each
of the theorems in this section on a separate piece of paper and prove them yourself (to make things more
interesting, see if you can do it without using any Galois theory).
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The most common way to represent Fp for computational purposes is to pick a set of
unique coset representatives for Z/pZ, such as the integers in the interval [0, p− 1].

Definition 3.4. For each prime power q = pn we define Fq = Fpn to be the field extension
of Fp generated by adjoining all roots of xq − x to Fp (the splitting field of xq − x over Fp).

Theorem 3.5. Let q = pn be a prime power. The field Fq has cardinality q and every field
of cardinality q is isomorphic to Fq.

Proof. The map x 7→ xq = xp
n is an automorphism of Fq, since in characteristic p we have

(a+ b)p
n

= ap
n

+ bp
n

and (ab)p
n

= ap
n
bp

n
,

where the first identity follows from the binomial theorem (the binomial coefficients
(
pn

k

)
all

vanish except
(
pn

0

)
=
(
pn

pn

)
= 1). The subfield of Fq fixed by this automorphism is precisely

the set S of roots of xq − x, which includes Fp, since

(1 + · · ·+ 1)q = 1q + · · ·+ 1q = 1 + · · ·+ 1.

Thus Fq = S, as sets. The polynomial xq − x has no roots in common with its derivative
(xq − x)′ = qxq−1 − 1 = −1, so it has q distinct roots. Therefore #Fq = #S = q.

Now let k be a field of cardinality q = pn. Then k must have characteristic p, since
the set {1, 1 + 1, . . .} is a subgroup of the additive group of k, so the characteristic divides
#k = pn, and in a finite ring with no zero divisors the characteristic must be prime. By the
previous theorem, k contains a subfield isomorphic to Fp. The order of each α ∈ k× (the
multiplicative group of k containing all nonzero elements) must divide #k× = q − 1; thus
αq−1 = 1 for all α ∈ k×, and every α ∈ k, including α = 0, is thus a root of xq−x. We have
#k = q, so k contains every root of xq − x and is therefore isomorphic to Fq, the splitting
field of xq − x over Fp.

Remark 3.6. Now that we know all finite fields of cardinality q are isomorphic, we will feel
free to refer to any and all of them as the finite field Fq.

Theorem 3.7. The finite field Fpm is a subfield of Fpn if and only if m divides n.

Proof. If Fpm ⊆ Fpn then Fpn is an Fpm-vector space of (integral) dimension n/m, so m|n.
If m|n then pn− pm = (pm− 1)(pn−2m + pn−3m + · · ·+ p2m + pm) is divisible by pm− 1 and

xp
n − x = (xp

m − x)(1 + xp
m−1 + x2(p

m−1) + · · ·+ xp
n−pm)

is divisible by xpm−x. Thus every root of xpm−x is also a root of xpn−x, so Fpm ⊆ Fpn .

Theorem 3.8. If f ∈ Fp[x] is an irreducible polynomial of degree n then Fp[x]/(f) ' Fpn.

Proof. The ring k := Fp[x]/(f) is an Fp-vector space with basis 1, . . . , xn−1 and therefore
has cardinality pn. The ring Fp[x] is a Euclidean domain.3 If a ∈ Fp[x] is not divisible
by f then we must have gcd(f, a) = 1 (since f is irreducible), and we can then use the
extended Euclidean algorithm to compute u, v ∈ Fp[x] satisfying ua+ vf = 1, and u is than
a multiplicative inverse of a modulo f (exactly as in the proof of Theorem 3.3).

It follows that every nonzero element of the commutative ring k has a multiplicative
inverse, thus k is a field of cardinality pn and therefore isomorphic to Fpn .

3Recall that this means it has a division algorithm that produces a remainder that is always “smaller"
than the divisor; for a polynomial ring “smaller" means lower degree.
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Theorem 3.8 allows us to explicitly represent Fpn as Fp[x]/(f) using any irreducible
polynomial f ∈ Fp[x] of degree n, and it does not matter which f we pick; by Theorem 3.5
we always get the same field (up to isomorphism). We also note the following corollary.

Corollary 3.9. Every irreducible polynomial f ∈ Fp[x] of degree n splits completely in Fpn.

Proof. We have Fp[x]/(f) ' Fpn , so every root of f must be a root of xpn − x, hence an
element of Fpn .

Remark 3.10. This corollary implies that xpn − x is the product over the divisors d of
n of all monic irreducible polynomials of degree d in Fp[x]. This can be used to derive
explicit formulas for the number of irreducible polynomials of degree d in Fp[x] using Möbius
inversion.

Theorem 3.11. Every finite subgroup of the multiplicative group of a field is cyclic.

Proof. Let k be a field, let G be a subgroup of k× of order n, and let m be the exponent
of G (the least common multiple of the orders of its elements), which necessarily divides n.
Every element of G is a root of xm − 1, which has at most m roots, so m = n. For each
prime power q dividing m, there must be an element of G of order q (otherwise m would be
smaller). Since G is abelian, any product of elements of relatively prime orders a and b has
order ab. It follows that G contains an element of order m = n and is therefore cyclic.

Corollary 3.12. The multiplicative group of a finite field is cyclic.

If α is a generator for the multiplicative group F×q , then it certainly generates Fq as
an extension of Fp, that is, Fq = Fp(α), and we have Fq ' Fp[x]/(f), where f ∈ Fp[x] is
the minimal polynomial of α, but the converse need not hold. This motivates the following
definition.

Definition 3.13. A monic irreducible polynomial f ∈ Fp[x] whose roots generate the mul-
tiplicative group of the finite field Fp[x]/(f) is called a primitive polynomial.

Theorem 3.14. For every prime p and positive integer n there exist primitive polynomials
of degree n in Fp[x]. Indeed, the number of such polynomials is φ(pn − 1)/n.

Here φ(m) is the Euler function that counts the generators of a cyclic group of order m,
equivalently, the number of integers in [1,m− 1] that are relatively prime to m.

Proof. Let α be a generator for F×pn with minimal polynomial fα ∈ Fp[x]; then fα is primitive.
There are φ(pn−1) possible choices for α. Conversely, if f ∈ Fp[x] is a primitive polynomial
of degree n then each of its n roots is a generator for F×q . We thus have a surjective n-to-1
map α→ fα from the set of generators of F×pn to the set of primitive polynomials over Fp of
degree n; the theorem follows.

The preceding theorem implies that there are plenty of irreducible (and even primitive)
polynomials f ∈ Fp[x] that we can use to represent Fq = Fp[x]/(f) when q is not prime. The
choice of the polynomial f has some impact on the cost of reducing a polynomials in Fp[x]
modulo f ; ideally we would like f to have as few nonzero coefficients as possible. We can
choose f to be a binomial only when its degree divides p− 1, but we can usually (although
not always) choose f to be a trinomial; see [6]. Finite fields in cryptographic standards are
often specified using an f ∈ Fp[x] that makes reduction modulo f particularly efficient.
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Having fixed a representation for Fq, every finite field operation can ultimately be reduced
to integer arithmetic: elements of Fp are represented as integers in [0, p−1], and elements of
Fq = Fp[x]/(f) are represented as polynomials of degree less than deg f whose coefficients
are integers in [0, p − 1]. We will see exactly how to efficiently reduce arithmetic in Fq to
integer arithmetic in the next lecture. In the rest of this lecture we consider the complexity
of integer arithmetic.

3.2 Integer addition

Every nonnegative integer a has a unique binary representation a =
∑n−1

i=0 ai2
i with ai ∈

{0, 1} and an−1 6= 0. The binary digits ai are called bits, and we say that a is an n-bit
integer ; we can represent negative integers by including an additional sign bit.

To add two integers in their binary representations we apply the “schoolbook" method,
adding bits and carrying as needed. For example, we can compute 43+37=80 in binary as

101111

101011
+100101
1010000

The carry bits are shown in red. To see how this might implemented in a computer,
consider a 1-bit adder that takes two bits ai and bi to be added, along with a carry bit ci.

1-bit
adder

ai bi

ci ci+1

si

ci+1 = (ai ∧ bi) ∨ (ci ∧ ai) ∨ (ci ∧ bi)

si = ai ⊗ bi ⊗ ci

The symbols ∧, ∨, and ⊗ denote the boolean functions AND, OR, and XOR (exclusive-or)
respectively, which we may regard as primitive components of a boolean circuit. By chaining
n + 1 of these 1-bit adders together, we can add two n-bit numbers using 7n + 7 = O(n)
boolean operations on individual bits.

Remark 3.15. Chaining adders is known as ripple addition and is no longer commonly used,
since it forces a sequential computation. In practice more sophisticated methods such as
carry-lookahead are used to facilitate parallelism. This allows most modern microprocessors
to add two 64 (or even 128) bit integers in a single clock cycle.

We could instead represent the same integer a as a sequence of words rather than bits.
For example, write a =

∑k−1
i=0 ai2

64i, where k =
⌈ n

64

⌉
. We may then add two integers using

a sequence of O(k), equivalently, O(n), operations on 64-bit words. Each word operation
is ultimately implemented as a boolean circuit that involves operations on individual bits,
but since the word-size is fixed, the number of bit operations required to implement any
particular word operation is a constant. So the number of bit operations is again O(n), and
if we ignore constant factors it does not matter whether we count bit or word operations.

Subtraction is analogous to addition (now we need to borrow rather than carry), and
has the same complexity, so we will not distinguish these operations when analyzing the
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complexity of algorithms. With addition and subtraction of integers, we have everything we
need to perform addition and subtraction in a finite field. To add two elements of Fp ' Z/pZ
that are uniquely represented as integers in the interval [0, p− 1] we simply add the integers
and check whether the result is greater than or equal to p; if so we subtract p to obtain a
value in [0, p− 1]. Similarly, after subtracting two integers we add p if the result is negative.
The total work involved is still O(n) bit operations, where n = lg p is the number of bits
needed to represent a finite field element.

To add or subtract two elements of Fq ' (Z/pZ)[x]/(f) we simply add or subtract the
corresponding coefficients of the polynomials, for a total cost of O(d lg p) bit operations,
where d = deg f , which is again O(n) bit operations, if we put n = lg q = d lg p.

Theorem 3.16. The time to add or subtract two elements of Fq in our standard represen-
tation is O(n), where n = lg q is the size of a finite field element.

3.3 A quick refresher on asymptotic notation

Let f and g be two real-valued functions whose domains include the positive integers. The
big-O notation “f(n) = O(g(n))" is shorthand for the statement:

There exist constants c and N such that for all n ≥ N we have |f(n)| ≤ c|g(n)|.

This is equivalent to

lim sup
n→∞

|f(n)|
|g(n)|

<∞.

Warning 3.17. This notation is a horrible abuse of the symbol “=". When speaking in
words we would say “f(n) is O(g(n))," where the word “is" does not imply equality (e.g.,
“Aristotle is a man"), and it is generally better to write this way. Symbolically, it would
make more sense to write f(n) ∈ O(g(n)), regarding O(g(n)) as a set of functions. Some
do, but the notation f(n) = O(g(n)) is far more common and we will occasionally use it
in this course, with one caveat: we will never write a big-O expression on the left of an
“equality". It may be true that f(n) = O(n log n) implies f(n) = O(n2), but we avoid
writing O(n log n) = O(n2) because O(n2) 6= O(n log n).

We also have big-Ω notation “f(n) = Ω(g(n))", which means g(n) = O(f(n)).4 Then
there is also little-o notation “f(n) = o(g(n)),” which is shorthand for

lim
n→∞

|f(n)|
|g(n)|

= 0.

An alternative notation that is sometimes used is f � g, but depending on the author this
may mean f(n) = o(g(n)) or f(n) = O(g(n)) (computer scientists tend to mean the former,
while number theorists usually mean the latter, so we will avoid this notation). There is also
a little-omega notation, but the symbol ω already has so many uses in number theory that
we will not burden it further (we can always use little-o notation instead). The notation
f(n) = Θ(g(n)) means that both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold.

4The Ω-notation originally defined by Hardy and Littlewood had a slightly weaker definition, but modern
usage generally follows our convention, which is due to Knuth.
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Warning 3.18. Don’t confuse a big-O statement with a big-Θ statement; the former implies
only an upper bound. If Alice has an algorithm that is O(2n) this does not mean that Alice’s
algorithm requires exponential time, and it does not mean that Bob’s O(n2) algorithm is
better; Alice’s algorithm could be O(n) for all we know. But if Alice’s algorithm is Ω(2n)
then we would definitely prefer to use Bob’s algorithm for all sufficiently large n.

Big-O notation can also be used for multi-variable functions: f(m,n) = O(g(m,n)) is
shorthand for the statement:

There exist constants c and N such that for all m,n ≥ N we have |f(m,n)| ≤ c|g(m,n)|.

This statement is weaker than it appears. For example, it says nothing about the relationship
between f(m,n) and g(m,n) if we fix one of the variables. However, in virtually all of
the examples we will see it will actually be true that if we regard f(m,n) = fm(n) and
g(m,n) = gm(n) as functions of n with a fixed parameter m, we have fm(n) = O(gm(n))
(and similarly fn(m) = O(gn(m))).

So far we have spoken only of time complexity, but space complexity plays a crucial
role in many algorithms that we will see in later lectures. Space complexity measures the
amount of memory an algorithm requires; this can never be greater than its time complexity
(it takes time to use space), but it may be smaller. When we speak of “the complexity" of
an algorithm, we should really consider both time and space. An upper bound on the time
complexity is also an upper bound on the space complexity but it is often possible (and
desirable) to obtain a better bound for the space complexity.

For more information on asymptotic notation and algorithmic complexity, see [2].

Warning 3.19. In this class, unless explicitly stated otherwise, our asymptotic bounds
always count bit operations (as opposed to finite field operations, or integer operations).
When comparing complexity bounds found in the literature, one must be sure to understand
exactly what is being counted. For example, a complexity bound that counts operations in
finite fields may need to be converted to a bit complexity to get an accurate comparison,
and this conversion is going to depend on exactly which finite field operations are being used
and how the finite fields are represented.

3.4 Integer multiplication

We now consider the problem of multiplying integers.

3.4.1 Schoolbook method

Let us compute 37×43 = 1591 with the “schoolbook" method, using a binary representation.

101011
× 100101

101011
101011

+101011
11000110111

Multiplying individual bits is easy (just use an AND-gate), but we need to do n2 bit mul-
tiplications, followed by n additions of n-bit numbers (suitably shifted). The complexity of
this algorithm is thus Θ(n2). This gives us an upper bound on the time M(n) to multiply
two n-bit integers, but we can do better.
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3.4.2 Karatsuba’s algorithm

Rather than representing n-bit integers using n digits in base 2, we may instead represent
them using 2 digits in base 2n/2. We may then compute their product as follows

a = a0 + 2n/2a1

b = b0 + 2n/2b1

ab = a0b0 + 2n/2(a1b0 + b1a0) + 2na1b1

Naively, this requires four multiplications of (n/2)-bit integers and three additions of O(n)-
bit integers (note that multiplying an intermediate result by a power of 2 can be achieved
by simply writing the binary output “further to the left" and is effectively free). However,
we can use the following identity to compute a0b1 + b0a1 more efficiently

a0b1 + b0a1 = (a0 + a1)(b0 + b1)− a0b0 − a1b1.

By reusing the common subexpressions a0b0 and a1b1, we can multiply a and b using three
multiplications and six additions (we count subtractions as additions). We can use the same
idea to recursively compute the three products a0b0, a1b1, and (a0 + a1)(b0 + b1); this is
known as Karatsuba’s algorithm.

If we let T (n) denote the running time of this algorithm, we have

T (n) = 3T (n/2) +O(n)

= O(nlg 3)

Thus M(n) = O(nlg 3) ≈ O(n1.59).5

3.4.3 The Fast Fourier Transform (FFT)

The fast Fourier transform is widely regarded as one of the top ten algorithms of the twen-
tieth century [3, 5], and has applications throughout applied mathematics. Here we focus
on the discrete Fourier transform (DFT), and its application to multiplying integers and
polynomials, following the presentation in [7, §8]. It is actually more natural to address the
problem of polynomial multiplication first.

Let R be a commutative ring containing a primitive nth root of unity ω, by which we
mean that ωn = 1 and ωi − ωj is not a zero divisor for 0 ≤ i < j < n (when R is a field
this coincides with the usual definition). We shall identify the set of polynomials in R[x]
of degree less than n with the set of all n-tuples with entries in R. Thus we represent the
polynomial f(x) =

∑n−1
i=0 fix

i by its coefficient vector (f0, . . . , fn−1) ∈ Rn and may speak
of the polynomial f ∈ R[x] and the vector f ∈ Rn interchangeably.

The discrete Fourier transform DFTω : Rn → Rn is the R-linear map

(f0, . . . , fn−1)
DFTω−−−−→ (f(ω0), . . . , f(ωn−1)).

You should think of this map as a conversion between two types of polynomial representa-
tions: we take a polynomial of degree less than n represented by n coefficients (its coefficient-
representation and convert it to a representation that gives its values at n known points (its
point-representation).

5We write lgn for log2 n.
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One can use Lagrange interpolation to recover the coefficient representation from the
point representation, but our decision to use values ω0, . . . , ωn−1 that are nth roots of unity
allows us to do this more efficiently. If we define the Vandermonde matrix

Vω :=


1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2n−2

1 ω3 ω6 · · · ω3n−3

...
...

... · · ·
...

1 ωn−1 ω2n−2 · · · ω(n−1)2

 ,

then DFTω(f) = Vωf
t. Our assumption that none of the differences ωi−ωj is a zero divisor

in R guarantees that the matrix Vω is invertible, and in fact its inverse is just 1
nVω−1 . It

follows that
DFT−1ω =

1

n
DFTω−1 .

Thus if we have an algorithm to compute DFTω we can use it to compute DFT−1ω : simply
replace ω by ω−1 and multiply the result by 1

n .
We now define the cyclic convolution f ∗ g of two polynomials f, g ∈ Rn:

f ∗ g = fg mod (xn − 1).

Reducing the product on the right modulo xn−1 ensures that f ∗g is a polynomial of degree
less than n, thus we may regard the cyclic convolution as a map from Rn to Rn. If h = f ∗g,
then hi =

∑
fjgk, where the sum is over j + k ≡ i mod n. If f and g both have degree less

than n/2, then f ∗ g = fg; thus the cyclic convolution of f and g can be used to compute
their product, provided that we make n big enough.

We also define the pointwise product f · g of two vectors in f, g ∈ Rn:

f · g = (f0g0, f1g1, . . . , fn−1gn−1).

We have now defined three operations on vectors in Rn: the binary operations of convolution
and point-wise product, and the unary operation DFTω. The following theorem relates these
three operations and is the key to the fast Fourier transform.

Theorem 3.20. DFTω(f ∗ g) = DFTω(f) ·DFTω(g).

Proof. Since f ∗ g = fg mod (xn − 1), we have

f ∗ g = fg + q · (xn − 1)

for some polynomial q ∈ R[x]. For every integer i from 0 to n− 1 we then have

(f ∗ g)(ωi) = f(ωi)g(ωi) + q(ωi)(ωin − 1)

= f(ωi)g(ωi),

where we have used (ωin − 1) = 0, since ω is an nth root of unity.

The theorem implies that if f and g are polynomials of degree less then n/2 then

fg = f ∗ g = DFT−1ω (DFTω(f) ·DFTω(g)). (1)
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This identify allows us to multiply polynomials using the discrete Fourier transform. To
put this into practice, we need an efficient way to compute DFTω, which is achieved by the
following recursive algorithm.

Algorithm: Fast Fourier Transform (FFT)
Input: A positive integer n = 2k, a vector f ∈ Rn, and the vector (ω0, . . . , ωn−1) ∈ Rn.
Output: DFTω(f) ∈ Rn.

1. If n = 1 then return (f0) and terminate.

2. Write the polynomial f(x) in the form f(x) = g(x) + x
n
2 h(x), where g, h ∈ R

n
2 .

3. Compute the vectors r = g + h and s = (g − h) · (ω0, . . . , ω
n
2
−1) in R

n
2 .

4. Recursively compute DFTω2(r) and DFTω2(s) using (ω0, ω2, . . . , ωn−2).

5. Return (r(ω0), s(ω0), r(ω2), s(ω2), . . . , r(ωn−2), s(ωn−2))

Let T (n) be the number of operations in R used by the FFT algorithm. Then T (n) satisfies
the recurrence T (n) = 2T (n2 ) +O(n), and it follows that T (n) = O(n log n).

Theorem 3.21. The FFT algorithm outputs DFTω(f).

Proof. We must verify that the kth entry of the output vector is f(ωk), for 0 ≤ k < n. For
the even values of k = 2i we have:

f(ω2i) = g(ω2i) + (ω2i)n/2h(ω2i)

= g(ω2i) + h(ω2i)

= r(ω2i).

For the odd values of k = 2i+ 1 we have:

f(ω2i+1) =
∑

0≤j<n/2

fjω
(2i+1)j +

∑
0≤j<n/2

fn/2+jω
(2i+1)(n/2+j)

=
∑

0≤j<n/2

gjω
2ijωj +

∑
0≤j<n/2

hjω
2ijωinωn/2ωj

=
∑

0≤j<n/2

(gj − hj)ωjω2ij

=
∑

0≤j<n/2

sjω
2ij

= s(ω2i),

where we have used the fact that ωn/2 = −1.

Corollary 3.22. Let R be a commutative ring containing a primitive nth root of unity, with
n = 2k, and assume 2 ∈ R×. We can multiply two polynomials in R[x] of degree less than
n/2 using O(n log n) operations in R.

Proof. From (1) we have

fg = DFT−1ω (DFTω(f) ·DFTω(g)) =
1

n
DFTω−1(DFTω(f) ·DFTω(g))
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and we note that n = 2k ∈ R× is invertible. We can compute ω0, . . . , ωn−1 using O(n) mul-
tiplications in R (this also gives us (ω−1)0, . . . , (ω−1)n−1). Computing DFTω and DFTω−1

via the FFT algorithm uses O(n log n) operations in R, computing the pointwise product of
DFTω(f) and DFTω(g) uses O(n) operations in R, and computing 1/n and multiplying a
polynomial of degree less than n by this scalar uses O(n) operations in R.

What about rings that do not contain an nth root of unity? By extending R to a new
ring R′ := R[ω]/(ωn − 1) we can obtain a formal nth root of unity ω, and one can then
generalize Corollary 3.22 to multiply polynomials in any ring R in which 2 is invertible using
O(n log n log log n) operations in R; see [7, §8.3] for details.

The need for 2 to be invertible can be overcome by considering a 3-adic version of the
FFT algorithm that works in rings R in which 3 is invertible. For rings in which neither 2
nor 3 is invertible we instead compute 2kfg and 3mfg (just leave out the multiplication by
1/n at the end). Once we know both 2kfg and 3mfg we can recover the coefficients of fg by
using the Euclidean algorithm to compute u, v ∈ Z such that u2k + v3m = 1 and applying
u2kfg + v3mfg = fg.

3.5 Integer multiplication

To any positive integer a =
∑n−1

i=0 ai2
i we may associate the polynomial fa(x) =

∑n
i=0 aix

i ∈
Z[x], with ai ∈ {0, 1}, so that a = fa(2). We can then multiply positive integers a and b via

ab = fab(2) = (fafb)(2).

Note that the polynomials fa(x)fb(x) and fab(x) may differ (the former may have coefficients
greater than 1), but they take the same value at x = 2; in practice one typically uses base
264 rather than base 2 (the ai and bi are then integers in [0, 264 − 1]).

Applying the generalization of Corollary 3.22 discussed above to the ring Z, Schönhage
and Strassen [9] obtain an algorithm to multiply two n-bit integers in timeO(n log n log log n),
which gives us a new upper bound

M(n) = O(n log n log log n).

Remark 3.23. As shown by Fürer [4], this bound can been improved to

M(n) = O
(
n log n 2O(log∗n)

)
where log∗n denotes the iterated logarithm, which counts how many times the log function
must be applied to n before the result is less than or equal to 1. Recently the sharper bound

M(n) = O
(
n log n 8log

∗n
)

was proved in [8], and under a conjecture about the existence of Mersenne primes, the 8
can be replaced with 4. But these improvements, and even the original Schönhage Strassen
algorithm, are primarily of theoretical interest: in practice one uses the “three primes"
algorithm sketched below.

The details of the Schoönhage and Strassen algorithm and its subsequent improvements
are rather involved. There is a simpler approach that is used in practice which handles inte-
gers up to 22

62 ; this includes integers that would require 500 petabytes (500,000 terabytes)
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to store in memory and is more than enough for any practical application that is likely to
arise in the near future. Let us briefly outline this approach.

Write the positive integers a, b < 22
62 that we wish to multiply in base 264 as a =

∑
ai2

64i

and b =
∑
bi2

64i, with 0 ≤ ai, bi < 264, and define the polynomials fa =
∑
aix

i ∈ Z[x] and
fb =

∑
bix

i ∈ Z[x] as above. Our goal is to compute fab(264) = (fafb)(2
64), and we note

that the polynomial fafb ∈ Z[x] has less than 262/64 = 256 coefficients, each of which is
bounded by 256264264 < 2184.

Rather than working over a single ring R we will use three finite fields Fp of odd char-
acteristic, where p is one of primes

p1 := 71 · 257 + 1, p2 := 75 · 257 + 1, p3 := 95 · 257 + 1.

Note that if p is any of the primes p1, p2, p3, then F×p is a cyclic group whose order p− 1 is
divisible by 257, which implies that Fp contains a primitive 257th root of unity ω; indeed,
for p = p1, p2, p3 we can use ω = ω1, ω2, ω3, respectively, where ω1 = 287, ω2 = 149, ω3 = 55.

We can thus use the FFT Algorithm above with R = Fp to compute fafb mod p for each
of the primes p ∈ {p1, p2, p3}. This gives us the values of the coefficients of fafb ∈ Z[x]
modulo three primes whose product p1p2p3 > 2189 is more than large enough to uniquely
the coefficients via the Chinese Remainder Theorem (CRT); the time to recover the integer
coefficients of fafb from their values modulo p1, p2, p3 is negligible compared to the time to
apply the FFT algorithm over these three fields.

3.6 Kronecker substitution

We now note an important converse to the idea of using polynomial multiplication to multi-
ply integers: we can use integer multiplication to multiply polynomials. This is quite useful
in practice, as it allows us take advantage of very fast implementations of FFT–based integer
multiplication that are now widely available. If f is a polynomial in Fp[x], we can lift f
to f̂ ∈ Z[x] by representing its coefficients as integers in [0, p − 1]. If we then consider the
integer f̂(2m), where m = d2 lg p+ lg2(deg f + 1)e, the coefficients of f̂ will appear in the
binary representation of f̂(2m) separated by blocks ofm−dlg pe zeros. If g is a polynomial of
similar degree, we can easily recover the coefficients of ĥ = f̂ ĝ ∈ Z[x] in the integer product
N = f̂(2m)ĝ(2m); we then reduce the coefficients of ĥ modulo p to get h = fg. The key is
to make m large enough so that the kth block of m binary digits in N contains the binary
representation of the kth coefficient of ĥ.

This technique is known as Kronecker substitution, and it allows us to multiply two
polynomials of degree d in Fp[x] in time O(M(d(n+log d)), where n = log p. Typically log d =
O(n), in which case this simplifies to O(M(dn)) In particular, we can multiply elements of
Fq ' Fp[x]/(f) in time O(M(n)), where n = log q, provided that either log deg f = O(n)
or log p = O(1), which are the two most typical cases, corresponding to large characteristic
and small characteristic fields, respectively.

Remark 3.24. When log d = O(n), if we make the standard assumption that M(n) grows
super-linearly then using Kronecker substitution is strictly faster (by more than any constant
factor) than a layered approach that uses the FFT to multiply polynomials and then recur-
sively uses the FFT for the coefficient multiplications; this is becauseM(dn) = o(M(d)M(n)).

3.7 Complexity of integer arithmetic

To sum up, we have the following complexity bounds for arithmetic on n-bit integers:
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addition/subtraction O(n)
multiplication (schoolbook) O(n2)
multiplication (Karatsuba) O(nlg 3)
multiplication (FFT) O(n log n log logn)
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