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21 The Hilbert class polynomial

In the previous lecture we proved that the field of modular functions for Γ0(N) is generated
by the functions j(τ) and jN (τ) := j(Nτ), that is, C(Γ0(N)) = C(j, jN ), and we showed
that C(j, jN ) is a finite extension of C(j). We then defined the modular polynomial ΦN (Y )
as the minimal polynomial of jN over C(j) and proved that its coefficients lie in Z[j] ⊆ C(j).
Replacing j with a formal variable X, we obtain a polynomial ΦN ∈ Z[X,Y ] that gives a
canonical defining equation for the modular curve X0(N).1

In this lecture we will use ΦN to prove that the Hilbert class polynomial2

HD(X) := HO(X) :=
∏

j(E)∈EllO(C)

(
X − j(E)

)
also has integer coefficients; here EllO(C) := {j(E) : End(E) ' O} is the set of j-invariants
of elliptic curves E/C with complex multiplication (CM) by the imaginary quadratic order O
with discriminant D = disc(O). Recall that D uniquely determines O (and vice versa),
by Theorem 18.17, so the notation HD is unambiguous (both HD and HO appear in the
literature, we will use the former).

The fact that HD ∈ Z[x] implies that the j-invariant of any elliptic curve E/C with
complex multiplication must be an algebraic integer, meaning that E can actually be defined
over a number field (a finite extension of Q). This is a remarkable result. It implies that of
the uncountably many isomorphism classes of elliptic curves over C, only countable many
have complex multiplication. In order to prove this we will exploit the interpretation of
X0(N) as the “moduli space” of cyclic N -isogenies of elliptic curves; our first task is to
explain what this means.

21.1 Isogenies

Recall from §18.5 in Lecture 18 that if L1 ⊆ L2 are lattices in C, and E1 and E2 are the
elliptic curves corresponding to the complex tori C/L1 and C/L2, then the inclusion L1 ⊆ L2

induces an isogeny φ : E1 → E2 whose kernel is isomorphic to the finite abelian group L2/L1.
Indeed, we have the commutative diagram

C/L1 C/L2

E1(C) E2(C)

ι

' '

φ

where the top map ι is induced by the inclusion L1 ⊆ L2 (lift from C/L1 to C then project
to C/L2). If we replace L2 by the homothetic lattice NL2, where N = [L2 :L1] = deg φ, the
inclusion NL2 ⊆ L1 induces an isogeny in the reverse direction which, after composing with
the isomorphism corresponding to the homethety L2 ∼ NL2, is the dual isogeny φ̂ : E2 → E1.
The composition φ ◦ φ̂ is the multiplication-by-N map on E2, corresponding to the lattice
inclusion NL2 ⊆ L2, with kernel isomorphic to L2/NL2 ' Z/NZ× Z/NZ.

1The curve ΦN (X,Y ) = 0 is a singular affine curve with the same function field as X0(N); the desingu-
larization of its projective closure is a smooth projective curve isomorphic to X0(N).

2Some authors use the term Hilbert class polynomial only when O is a maximal order (they then use the
term ring class polynomial for the general case); we won’t make this distinction.
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Definition 21.1. If L1 is a sublattice of L2 for which the group L2/L1 is cyclic, then we
say that L1 is a cyclic sublattice of L2. Similarly, an isogeny φ : E1 → E2 is said to be cyclic
if its kernel is a cyclic group. If φ is induced by the lattice inclusion L1 ⊆ L2 then φ is cyclic
if and only if L1 is a cyclic sublattice of L2.

As we proved in Corollary 6.11, up to isomorphism, every isogeny is a composition
of isogenies of prime degree, which are necessarily cyclic. So we may as well restrict our
attention to cyclic isogenies φ, which we will show correspond to points on the modular
curve X0(N), with N = deg φ, and in our proofs we will be content to restrict to the case
where N is prime, since we can always decompose φ into a composition of isogenies of prime
degree. It is thus enough for us to understand cyclic sublattices of prime index.

Lemma 21.2. Let L = [1, τ ] be a lattice with τ ∈ H and let N be prime. The cyclic
sublattices of L of index N are the lattice [1, Nτ ] and the lattices [N, τ + k], for 0 ≤ k < N .

Proof. The lattices [1, Nτ ] and [N, τ+k] are clearly index N sublattices of L, and they must
be cyclic sublattices, since N is prime. Conversely, any sublattice L′ ⊆ L can be written as
[d, aτ + k], where d is the least positive integer in L′ and the index of L′ in L is ad = N .
Since N is prime, either d = 1 and a = N , in which case L′ = [1, Nτ ], or d = N and a = 1,
in which case L′ = [N, τ + k], and we may assume 0 ≤ k < N .

2τ

1

τ

1

τ + 1

1

Figure 1: The three cyclic sublattices of [1, τ ] of index 2.

Theorem 21.3. For all j1, j2 ∈ C, we have ΦN (j1, j2) = 0 if and only if j1 and j2 are the
j-invariants of elliptic curves over C over that are related by a cyclic isogeny of degree N .

Proof for N prime. We will prove the equivalent statement that ΦN (j(L1), j(L2)) = 0 if
and only if L1 is homothetic to a cyclic sublattice of L2 of index N , equivalently, L2 is
homothetic to a cyclic sublattice of L1. We may assume without loss of generality that
L1 = [1, τ1] and L2 = [1, τ2], where τ1, τ2 ∈ H. As in the proof of Theorem 20.17 we have

ΦN (j(τ), Y ) = (Y − j(Nτ))
N−1∏
k=0

(Y − j(Nγkτ)), (1)

where γk := ST k, and

j
(
Nγkτ

)
= j
((

N 0
0 1

)
ST kτ

)
= j
(
S
(

1 k
0 N

)
τ
)

= j
((

1 k
0 N

)
τ
)

= j
(τ + k

N

)
.

Thus
ΦN (j(L1), j(L2)) = ΦN (j([1, τ1]), j([1, τ2])) = ΦN (j(τ1), j(τ2))

is zero if and only if τ2 is SL2(Z)-equivalent to Nτ1 or (τ1 + k)/N , with 0 ≤ k < N , hence
if and only if L2 is homothetic to a cyclic sublattice of L1 of index N , by Lemma 21.2.
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1 Theorem 21.3 applies more generally to any field that can be embedded in C, including
all number fields. It can be extended via the Lefschetz principle [8, Thm.VI.6.1] to any
field of characteristic zero, and as shown by Igusa [4], it also holds in fields of positive
characteristic p - N .

Theorem 21.4. Let k be a field whose characteristic is not a divisor of N ∈ Z>1. For all
j1, j2 ∈ k we have ΦN (j1, j2) = 0 if and only if j1 and j2 are the j-invariants of elliptic
curves over k that are related by a cyclic isogeny of degree N defined over k.

Remark 21.5. We could have written the theorem as ΦN (j(E1), j(E2)) = 0 if and only
if E1 and E2 are related by a cyclic isogeny of degree N , because over C the j-invariant
characterizes elliptic curves up to isomorphism. Over a non-algebraically closed field the
theorem remains true as written, but it is not necessarily true that ΦN (j(E1), j(E2) = 0
implies the existence of a cyclic N -isogeny E1 → E2; one might need to replace E1 or E2

by a twist (a curve with the same j-invariant that is isomorphic over an extension field but
not necessarily over the field of definition).

Remark 21.6. We should note that if φ : E1 → E2 is a cyclic N -isogeny, the pair of j-
invariants (j(E1), j(E2)) does not uniquely determine φ, not even up to isomorphism. For
example, suppose End(E1) ' O and p 6= p is a proper O-ideal of prime norm p such that
[p] has order 2 in the class group cl(O). Then pE1 ' p̄E1, and the isogenies φp : E1 → pE1

and φp̄ : E1 → p̄E1 have distinct kernels but isomorphic images. These isogenies are not
isomorphic (there is no automorphism we can compose with one to get the other, their
kernels are distinct). In this situation Φp(j(E1), Y ) will have j(E2) as a double root.

The existence of the dual isogeny implies that ΦN (j1, j2) = 0 if and only if ΦN (j2, j1) = 0.
In fact ΦN (X,Y ) = ΦN (Y,X) is symmetric in the variables X and Y .

Theorem 21.7. ΦN (X,Y ) = ΦN (Y,X)

Proof. As in the proof of Theorem 21.3, the function j(Nγ0τ) = j(τ/N) is a root of
ΦN (j, Y ) ∈ C(j)[Y ] (this is true whether or not N is prime). We also have the identity
ΦN (j(τ), j(Nτ)) = 0, which implies ΦN (j(τ/N), j(τ)) = 0, so j(τ/N) is also a root of
ΦN (Y, j) ∈ C(j)[Y ]. But ΦN (j, Y ) is irreducible in C(j)[Y ], since it is the minimal polyno-
mial of jN over C(j), so ΦN (j, Y ) must divide ΦN (Y, j) in C(j)[Y ] (otherwise their GCD
would properly divide ΦN (j, Y )). It follows from Theorem 21.3 that ΦN (j, Y ) and ΦN (Y, j)
have the same degree, since in both cases, for any lattice L ⊆ C, the number of roots
of ΦN (j(L), Y ) and ΦN (Y, j(L)) when counted with multiplicity is the number of cyclic
sublattices of index N in L (which does not depend on the choice of L).3 It follows that
ΦN (Y, j) = f(j)ΦN (j, Y ) for some f ∈ C(j), and plugging in Y = j shows that f(j) = 1.

It follows that for prime N the polynomial ΦN (X,Y ) has degree N + 1 in X and Y .

Example 21.8. For N = 2 we have

Φ2(X,Y ) = X3 + Y 3 −X2Y 2 + 1488(X2Y +XY 2)− 162000(X2 + Y 2)

+ 40773375XY + 8748000000(X + Y )− 157464000000000.

3Note that, per Remark 21.6, we cannot assume the j-invariants are distinct, but the cyclic sublattices
are distinct; some may have the same j-invariant because distinct sublattices may be homothetic.
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As can be seen in this example, the integer coefficients of ΦN are already large when
N = 2, and they grow rapidly as N increases. For N prime it is known that the logarithm
of the absolute value of the largest coefficient of ΦN is on the order of 6N logN + O(N),
see [2], and it has O(N2) coefficients. Thus the total number of bits required to write down
ΦN is quasi-cubic in N ; in practical terms, Φ1009 is about 4 GB, and Φ10007 is about 5 TB.
This makes it quite challenging to compute these polynomials; you will explore an efficient
method for doing so on Problem Set 12.

21.2 Modular curves as moduli spaces

In the same way that the j-function defines a bijection from Y (1) = H/Γ(1) to C (which we
may regard as an affine curve in C2), the functions j(τ) and jN (τ) define a bijection from
Y0(N) = H/Γ0(N) to the affine curve ΦN (X,Y ) = 0 via the map

τ 7→ (j(τ), jN (τ)).

If {γk} is a set of right coset representatives for Γ0(N) then for each γk we have

γkτ 7→ (j(γkτ), jN (γkτ)) = (j(τ), jN (γkτ)),

and as in the proof of Theorem 21.3, each of these points corresponds to a cyclic N -isogeny
E → E′ with j(E) = j(τ) and j(E′) = jN (γkτ)). We can thus view the modular curve
Y0(N), equivalently, the non-cuspidal points onX0(N), as parameterizing cyclicN -isogenies.

As noted above such an isogeny is not always uniquely determined by a pair of j-
invariants (these correspond to singular points on the curve ΦN (X,Y ) = 0), but a cyclic
N -isogeny φ : E → E′ is uniquely determined by the pair (E, 〈P 〉), where P is any gen-
erator for kerφ (so P is a point of order N). Recall from Theorem 6.10 that every finite
subgroup of points on an elliptic curve determines a separable isogeny that is unique up
to isomorphism. Every pair (E, 〈P 〉) thus corresponds to a non-cuspidal point of X0(N);
two pairs (E, 〈P 〉) and (E′, 〈P ′〉) correspond to the same point if and only if there exists an
isomorphism ϕ : E

∼→ E′ such that ϕ(〈P 〉) = 〈P ′〉.
With this interpretation the modular curveX0(N) can be viewed as the “moduli space” of

cyclic N -isogenies of elliptic curves, each identified by a pair (E, 〈P 〉), up to the isomorphism
defined above. We won’t formally define the notion of a moduli space in this course, but
this can be done, and it provides an alternative definition of X0(N). The key point from
our perspective is that this moduli interpretation is valid over any field, not just C. The
modular curves X0(N) play a key role in many algorithms that work with elliptic curves
over finite fields, including the Schoof-Elkies-Atkin (SEA) point-counting algorithm (a faster
version of Schoof’s algorithm), and fast algorithms to compute Hilbert class polynomials,
which are the key to the CM method that we will discuss in the next lecture.

Other modular curves also have characterizations as moduli spaces. We have already
seen that the modular curve X(1) is the moduli space of isomorphism classes of elliptic
curves, and for N > 1 the modular curve X(N) is the moduli space of triples (E,P1, P2),
where {P1, P2} is a basis for the N -torsion subgroup of E, and the modular curve X1(N)
is the moduli space of pairs (E,P ), where P is a point of order N on E. Note that in each
case one considers triples or pairs only up to a suitable isomorphism, as with X0(N) above.
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21.3 The Hilbert class polynomial

We now turn our attention to the Hilbert class polynomial. Recall that for each imaginary
quadratic order O, we have the set

EllO(C) := {j(E) ∈ C : End(E) ' O}

of equivalence classes of elliptic curves with complex multiplication (CM) by O, and the
ideal class group cl(O) acts on EllO(C) via isogenies, as we now recall. Every elliptic curve
E/C with CM by O is of the form Eb corresponding to the torus C/b, where b is a proper
O-ideal for which j(b) = j(E) (note that j(b) = j(E) depends only on the class [b] in cl(O)).
If [a] is an element of cl(O), then a acts on Eb by the isogeny

φa : Eb → Ea−1b

of degree Na induced by the lattice inclusion b ⊆ a−1b. As with Eb, the isomorphism class
of Ea−1b depends only on the class [a−1b] in cl(O), and we proved that this action is free
and transitive, meaning that EllO(C) is a cl(O)-torsor. This implies that the set EllO(C) is
finite, with cardinality equal to the class number h(O) := # cl(O).

We may uniquely identify O by its discriminant D (by Theorem 18.17), and the Hilbert
class polynomial

HD(X) =
∏

j(E)∈EllO(C)

(X − j(E))

is the monic polynomial whose roots are the distinct j-invariants of all elliptic curves with
CM by O. We now want to use the fact that ΦN ∈ Z[X,Y ] to prove that HD ∈ Z[X]. To
do this we need the following lemma.

Lemma 21.9. If N is prime then the leading coefficient of ΦN (X,X) is −1.

Proof. Replacing Y with j(τ) in equation (1) for ΦN (Y ) yields

ΦN (j(τ), j(τ)) =
(
j(τ)− j(Nτ)

)N−1∏
k=0

(
j(τ)− j

(τ + k

N

))
.

Recall from the proof of Theorem 20.17 that we have the q-expansions

j(Nτ) =
1

qN
+ · · · ,

j
(τ + k

N

)
=

ζ−kN
q1/N

+ · · · ,

where q := e2πiτ , ζN := e2πi/N , and ellipses denotes terms involving larger powers of q. Thus

j(τ)− j(Nτ) = − 1

qN
+

1

q
+ · · · ,

j(τ)− j
(τ + k

N

)
=

1

q
−
ζ−kN
q1/N

+ · · · ,

which implies that the q-expansion of f(τ) = ΦN (j(τ), j(τ)) begins − 1
q2N

+ · · · . Since f(τ)

is a polynomial in j(τ) = 1
q + · · · , the leading term of ΦN (X,X) must be −X2N .
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Remark 21.10. Lemma 21.9 does not hold in general; in particular, when N is square
ΦN (X,X) is not even primitive (its coefficients have a non-trivial common divisor).

Before proving HD ∈ Z[X], we record the following classical result, which was proved
for maximal orders by Dirichlet and later generalized by Weber; see [3, p. 190]. Today this
is typically cited as a consequence of the Chebotarev4 density theorem, but since the proof
of the Chebotarev density theorem actually uses class field theory, a small part of which we
are about to prove, we should note that the result we need was proved earlier.

Theorem 21.11. Let O be an imaginary quadratic order. Every ideal class in cl(O) contains
infinitely many ideals of prime norm.

Proof. This follows from Theorems 7.7 and 9.12 in [3].

Theorem 21.12. The coefficients of the Hilbert class polynomial HD(X) are integers.

Proof. Let O be the imaginary quadratic order of discriminant D, let E/C be an elliptic
curve with CM by O, and let p be a principal O-ideal of prime norm p (by Theorem 21.11
there are infinitely many choices for p). Then [p] is the identity element of cl(O), so p acts
trivially on EllO(C). Thus pE ' E, which implies that, after composing with an isomor-
phism if necessary, we have a p-isogeny from E to itself, equivalently, an endomorphism of
degree p. Such an isogeny is necessarily cyclic, since it has prime degree, so we must have
Φp(j(E), j(E)) = 0. Thus j(E) is the root of the polynomial −Φp(X,X), which is monic,
by Lemma 21.9, and has integer coefficients, by Theorem 20.17. The j-invariant j(E) is
thus an algebraic integer, and the elliptic curve E can be defined by a Weierstrass equation
y2 = x3 +Ax+B whose coefficients lie in the number field Q(j(E)), by Theorem 14.12.

The absolute Galois group Gal(Q/Q) acts on the set of elliptic curves defined over number
fields via its action on the Weierstrass coefficients A and B: for each field automorphism
σ ∈ Gal(Q/Q) the curve Eσ is defined by the equation y2 = x3 + σ(A)x+ σ(B). Similarly,
σ acts on isogenies via its action on the coefficients of the rational map defining the isogeny.
If φ : E → E is an endomorphism, then so is φσ : Eσ → Eσ, and for any φ, ψ ∈ End(E) we
have (φ+ ψ)σ = φσ + ψσ and (φ ◦ ψ)σ = φσ ◦ ψσ. Thus each σ ∈ Gal(Q/Q) induces a ring
homomorphism

End(E)
σ−→ End(Eσ).

Applying σ−1 to Eσ induces an inverse homomorphism, we thus have a ring isomorphism
End(E) ' End(Eσ), which implies that Eσ also has CM by O.

The j-invariant of E is a rational function 1728 · 4A3/(4A3 + 1728B2) of A and B, so
j(Eσ) = j(E)σ, and we have shown that j(Eσ) ∈ EllO(C). It follows that Gal(Q/Q) acts
on the set EllO(C), which are precisely the roots of HD(X). The coefficients of HD(X) are
all symmetric polynomials in the roots, hence they are fixed by Gal(Q/Q) and therefore
lie in the fixed field Q. Every root of HD(X) is a root of Φp(X,X), thus HD(X) divides
Φp(X,X) in Q[X]. But Φp(X,X) has integer coefficients, and it is monic (hence primitive),
so by Gauss’s lemma [1, §12.3], its factors in Q[X] are the same as its factors in Z[X];
therefore HD ∈ Z[X] as claimed.

Corollary 21.13. Let E/C be an elliptic curve with complex multiplication. Then j(E) is
an algebraic integer.

4Many different transliterations of Chebotarev’s Russian name appear in the literature, including Chebo-
taryov, Čebotarev, Chebotarëv, Čhebotarëv, Tchebotarev, and Tschebotaröw; none is universally accepted.
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From the proof of Theorem 21.12, we now have two groups acting on the roots of HD(X):
the class group cl(O) and the Galois group Gal(Q/Q). In the latter case there is no need
to consider the entire Galois group Gal(Q/Q), we can always restrict our attention to any
Galois subfield L ⊆ Q that contains the splitting field L of HD(X), since the action of any
σ ∈ Gal(Q/Q) on the roots of HD(X) is determined by its restriction to Gal(L/Q). We
then have two finite group actions, and it is reasonable to ask whether they are in some
sense compatible.

In order to obtain compatible actions we do not want to work with the splitting field L
of HD(X) over Q, since Gal(L/Q), may contain automorphisms that don’t fix the order O.
but if we instead let L be the splitting field of HD(X) over K := Q

√
D), the Galois group

Gal(L/K) fixes O, and we will show that its action on EllO(C) is compatible with that of
the class group cl(O). In fact, Gal(L/K) ' cl(O). This isomorphism is part of the First
Main Theorem of Complex Multiplication, and our next goal is to prove it.

So let O be the imaginary quadratic order of discriminant D, and let us fix an elliptic
curve E1 with CM by O. Each σ ∈ Gal(L/K) can be viewed as the restriction to L of an
element of Gal(Q/Q) that fixes K, thus as in the proof of Theorem 21.12, the elliptic curve
Eσ1 also has CM by O. Therefore Eσ1 ' aE1 for some proper O-ideal a, since cl(O) acts
transitively on EllO(C). If E2 ' bE1 is any other elliptic curve with CM by O, we then have

Eσ2 ' (bE1)σ = bσEσ1 = bEσ1 ' baE1 = abE1 ' aE2. (2)

The innocent looking identity (bE1)σ = bσEσ1 used in (2) is not immediate, it requires a
somewhat lengthy argument involving a diagram chase that we omit; see [9, Prop. II.2.5]
for a proof. The second identity is immediate, because b ⊂ K and σ ∈ Gal(L/K) fixes K;
but note that this would not be true if we had instead used σ ∈ Gal(L/Q).

Since our choice of E2 was arbitrary, it follows from (2) that the action of σ on EllO(C)
is the same as the action of a on EllO(C). Because EllO(C) is a cl(O)-torsor, the map that
sends each σ ∈ Gal(K/K) to the unique class [a] ∈ cl(O) for which Eσ1 = aE1 defines a
group homomorphism

Ψ: Gal(L/K)→ cl(O).

This homomorphism is injective because, by definition of the splitting field, the only element
of Gal(L/K) that acts trivially on the roots of HD(X) is the identity element, and the same
is true of cl(O). We summarize this discussion with the following theorem.

Theorem 21.14. Let O be an imaginary quadratic order of discriminant D and let L be
the splitting field of HD(X) over K := Q(

√
D). The map Ψ : Gal(L/K) → cl(D) that

sends each σ ∈ Gal(L/K) to the unique ασ ∈ cl(O) for which j(E)σ = ασj(E) for all
j(E) ∈ EllO(E) is an injective group homomorphism.

We thus have an embedding of Gal(L/K) in cl(O) that is compatible with the actions of
both groups on EllO(C). It remains only to prove that Ψ is surjective, which is equivalent
to proving that HD(X) is irreducible over K. To do this we need to introduce the Artin
map (named after Emil Artin), which allows us to associate to each O-ideal p of prime norm
satisfying certain constraints an automorphism σp ∈ Gal(L/K) whose action on EllO(C)
corresponds to the action of [p]. In order to define the Artin map we need to briefly delve
into a bit of algebraic number theory. We will restrict our attention to the absolute minimum
that we need. Those who would like to know more may wish to consult one of [6, 7] (and/or
take 18.785 in the fall); those who do not may treat the Artin map as a black box.
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21.4 The Artin map

Let L be a finite Galois extension of a number field K. The nonzero prime ideals p in the
ring of integers OK are called “primes of K”.5 The OL-ideal pOL is typically not a prime
ideal, but it can be uniquely factored as

pOL = q1 · · · qn

where the qi are not-necessarily-distinct primes of L (prime ideals of OL) that are character-
ized by the property qi∩OK = p. The primes qi are said to “lie above” the prime p, and it is
standard to write qi|p as shorthand for qi|pOL and use {q|p} to denote the set {q1, . . . , qn}.

We should note that the ring OL is typically not a unique factorization domain, but it
is a Dedekind domain, and this implies unique factorization of ideals.6

When the qi are distinct, we say that p is unramified in L, which is true of all but
finitely many primes p. If we apply an automorphism σ ∈ Gal(L/K) to both sides of the
equation above, the LHS must remain the same: σ fixes every element of p ⊆ K, and it
maps algebraic integers to algebraic integers, so it preserves the set OL. For the RHS, it is
clear that σ must map OL-ideals to OL-ideals, and since the qi are all prime ideals, σ must
permute them. Thus the Galois group Gal(L/K) acts on the set {q1, . . . , qn} = {q|p}; one
can show that this action is transitive, but it is typically not faithful.

For each q|p, the stabilizer of q under this action is a subgroup

Dq := {σ ∈ Gal(L/K) : qσ = q} ⊆ Gal(L/K)

known as the decomposition group of q. Each σ ∈ Dq fixes q and therefore induces an
automorphism σ̄ of the quotient Fq := OL/q defined by σ̄(x̄) = σ(x), where x 7→ x̄ is the
quotient map OL → OL/q. Note that the quotient is a field (in a Dedekind domain every
nonzero prime ideal is maximal), and q has finite index Nq := [OL : q] in OL, so it is a
finite field whose cardinality Nq(which must be a prime power. The image of OK under the
quotient map OL → OL/q = Fq is OK/(q ∩ OK) = OK/p = Fp, thus the finite field Fp is a
subfield of Fq (and necessarily has the same characteristic). It follows that σ̄ ∈ Gal(Fq/Fp),
and we have a group homomorphism

Dq → Gal(Fq/Fp)

σ 7→ σ̄.

This homomorphism is surjective [7, Prop. I.9.4], and when p is unramified it is also injective
[7, Prop. I.9.5], and therefore an isomorphism, which we now assume.

The group Gal(Fq/Fp) is cyclic, generated by the Frobenius automorphism x → xNp,
where Np = [OK : p] = #Fp. The unique σq ∈ Dq for which σ̄q is the Frobenius automor-
phism is called the Frobenius element of Gal(L/K) at q. In general the Frobenius element
σq depends on our choice of q, but the σq for q|p are all conjugate, since if τ(qi) = qj then
we must have σqj = τ−1σqiτ .

In the case we are interested in, Gal(L/K) ↪→ cl(O) is abelian, so conjugacy implies
equality, and the σq are all the same. Thus when Gal(L/K) is abelian, each prime p of K

5This is an abuse of terminology: as a ring, K does not have any nonzero prime ideals (it is a field).
6There are several equivalent definitions of Dedekind domains: it is an integral domain with unique

factorization of ideals, and it also an integral domain in which every nonzero fractional ideal is invertible.
We have seen that the latter applies to rings of integers in number fields (at least for imaginary quadratic
fields), so the former must as well (this equivalence is a standard result from commutative algebra).
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determines a unique Frobenius element that we denote σp. The map

p 7→ σp

is known as the Artin map (it extends multiplicatively to all OK-ideals, but this is not
relevant to us). The automorphism σp is uniquely characterized by the fact that

σp(x) ≡ xNp mod q, (3)

for all x ∈ OL and primes q|p.
In the next lecture we will use the Artin map to prove that Ψ: Gal(L/K) → cl(O) is

surjective, hence an isomorphism.
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