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1 Lie’s Theorem

1.1 Weight spaces

Notation 1.1. Let V be a vector space over a field F. We will denote by V* the dual vector space.

Definition 1.1. Let h be a Lie algebra, 7 : h — glj, a representation of h and A € h*. We define
the weight space of h attached to A as

VY = {veV|x(h)v=Ah)v, Vh € h}.

If V;’ # 0, we will say that X is a weight for 7.

1.2 Lie’s Lemma

Lemma 1.1 (Lie’s Lemma). Let g be a Lie algebra and h C g an ideal both over F algebrically
closed and of characteristic 0. Let m be a representation of g in a finite dimensional F—vector space
V. Then each weight space V)\h for the restricted representation my is invariant under g.

Proof. We wish to show that if v € V), then m(a)v € V}, Ya € g. But this is verified if and only if
m(h)m(a)v = A(h)w(a)v, Yh € b, Va € g. (1)
Now,
m(h)m(a)v = [x(h), w(a)]v + 7(a)w(h)v = 7([h, a])v + 7 (a) A\ (k). (2)
Since b is an ideal, [h,a] € b, then (2) becomes
m(h)w(a)v = A([h, a])v + m(a)A(R)v. (3)

Thus, it is sufficient to show that
)‘([haa]) =0,Vh €,

whenever V/\b # 0.
Let us fix a € g and let 0 # v be an element in V)f) # {0}. We define

Wy = span < v,7(a)v, 71'2(a)v, o (a)v >, Ym >0, W = {0}.

Since V is finite dimensional, then there exists N € N s.t. N is the maximal integer for which
all the generators of Wy are linearly indipendent. Then we have Wy = Wy, = ..., hence



W(a)WN Cc Wy
We will consider the increasing sequence of subspaces

W_1:{O}CWO:{IFU}C - C Wi
Now we claim that Vm > 0, W), is invariant under m(f) and furthermore
Vh e b, n(h)m(a)™v — A(h)m(a)"v € Wy,_1. (4)

We prove (4) by induction on m. The case m = 0 is true since v € V/\h.
Suppose that we have proved the assumption for m — 1: we want to prove it for m.

m(h)m(a)™v — A(h)7(a)™v = [r(h), 7(a)]r(a)™ ‘v + 7(a)r(h)r(a)™ ‘v — A(h)7(a)™v =
= [r(h),7(a)]7(a)™ 'v + n(a)w(h)m(a)™ v — w(a)\(R)7(a)™ tv.

By induction hypothesis, we have that
w = 7m(h)m(a)™ v — Ah)m(a)™ v € Wy,

and 7(a)w € Wy,—1, by construction of the W;’s.
Moreover, § is an ideal so that [w(h),n(a)] € 7(h) and by inductive hypothesis

[7(R), 7(a)]m(a)™ v € W1,

thus,
m(h)m(a)™v — A(h)m(a)"v € W1

because it is a sum of elements in W,,,_1. This concludes the proof of the inductive step.
We know that Wy is invariant both for 7w (a) and for 7(h), Vh € h. In particular,(4) shows that

Vh € b, w(h) acts on Wy as an upper triangular matrix, with in the basis {v, 7(a)v,...,m(a’¥)v},
Ah) * ... % *
0 *
0 0 Ah) = *
0 0 0
0 0 0 0 XA

As a consequence of this, we have that
trWN([ﬂ-(h)v W(a)]) =0="trwy (W[h, a]) = N)‘([hv CL])
which implies that A([h,a]) = 0, since char F = 0. This concludes the proof. O

Lie’s Theorem. Let g be a solvable Lie algebra and m a representation of g on a finite dimensional
vector space V # 0, over an algebraically closed field F of characteristic 0. Then there exists a weight
X € g* for m, that is Vi # {0}.



Proof. We can suppose that g is finite dimensional, since V is finite dimensional and the represen-
tation factors in the following way:

g ul | End(V)
N

m(g)

As g is solvable, also m(g) will be solvable. This follows from the fact that 7(g)™ = 7(g(™) - by
induction on n.

We will prove Lie’s theorem by induction on the dimension of g, dimg = m.

The case dim g = 0 is trivial.

Suppose now that we have proved Lie’s theorem dim g = m — 1, we want to show that the theorem
holds also for g, dimg =m > 1.

Since g is solvable, of positive dimension, g properly includes [g,g]. Since g/[g, g] is abelian, any
subspace is automatically an ideal.

Take a subspace of codimension one in g/[g, g], then its inverse image b is an ideal of codimension
one in g (including [g, g]). Thus, we have the following decomposition of g as a vector space

g=bh+Fa.

Now, dimh = m — 1 and it is solvable (since an ideal of a solvable Lie algebra is solvable), hence by
inductive hypothesis we can find a non-zero weight space V/\b # {0}, A € b*. By Lie’s lemma, V/\b
is invariant under the action of m(g). In particular, TI'(CL)V/\h C V;) , hence (since F' is algebraically

closed) there exists 0 # v € V;’ such that m(a)v = la, for some [ € F. We define a linear functional
N € g* on g by
N(h+ pa) = X(h) +ul, Vh € b, 1 € F.

Thus, by construction, we see that v belongs to V/\g,. In particular Vf, # {0}. ]
Exercise. 5.1 Show that we may relax the assumption on F in Lie’s Lemma. Show Lie’s Lemma

under the assumptions that F is algebraically closed and that dim V' < char F.

In the proof, we calculated the trace of a certain endomorphism of W C V to be zero, and also to
be Ngq, where N = dim W and ¢ was a quantity that we needed to show was zero. Of course then
if the characteristic of F exceeds the dimension of V', dim W is non-zero in F and we may conclude
g = 0. Given this weaker assumption, the rest goes through unaltered.

Exercise. 5.2 Consider the Heisenberg algebra Hj3 and its representation on F|x| given by

c +— Id,
p = ()~ 2f(@), Vi) € Fla),
¢ = (f(@) o f@), V() € Flal

Show that the ideal generated by zV, 0 < N = char F, in F[z] is invariant for the representation
of H3 and that the induced representation of H3 on F[z]/(2") has no weight.



() is a subrepresentation, as it is preserved by the action of p and ¢, and the action of ¢ annihilates
the 2V term when differentiating. Now consider v = agzg+ai1x1+. . 4ay_12V"1, a representative
of an element of the quotient. All members of the quotient will be represented this way. Now if v
is a weight vector, its derivative must be kv for some k, so that ia; = ka;_1 for each i < N. On the
other hand, in order that it’s an eigenvector for p, it must have zero constant term, or have pv = 0.
These two statements show easily that v =0, (as ¢ # 0 when ¢ = 1,..., N — 1). Thus there is no
weight vector.

Exercise. 5.3 Show the following two corollaries to Lie’s Theorem:

o for all representations 7 of a solvable Lie algebra g on a finite dimensional vector space V over
an algebraically closed field F, char F = 0, there exists a basis for V for which the matrices
of m(g) are upper triangular;

e a solvable subalgebra g C gly, (V is finite dimensional over an algebraically closed field F,
char F = 0) is contained in the subalgebra of upper triangular matrices over F for some basis
of V.

The second statement is simply an application of the first. We prove the first by induction on the
module’s dimension. It is trivial in dimension 1. Suppose V is a module. Use Lie’s theorem to find
a weight v of V. The quotient module V/Fv, by induction, can given a basis such that g acts by
upper triangular matrices. Taking any preimages of that basis in V, and extending it to a basis of
V by including v, we obtain a basis of V' on which g acts by upper triangular matrices.

Exercise. 5.4 Let g be a finite dimensional solvable Lie algebra over the algebrically closed field
F, char F = 0. Show that [g, g is nilpotent.

If [g/Z(9),9/Z(g)] is nilpotent, so is [g, g, so using the adjoint representation, we may assume g
is a solvable subalgebra of gl;. Then by the previous, there is a basis in which g consists of upper
triangular matrices. Then [g, g] consists of strictly upper triangular matrices, and is a subalgebra
of the nilpotent Lie algebras u,.



