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1 Lie’s Theorem

1.1 Weight spaces

Notation 1.1. Let V be a vector space over a field F. We will denote by V ∗ the dual vector space.

Definition 1.1. Let h be a Lie algebra, π : h → glV a representation of h and λ ∈ h∗. We define
the weight space of h attached to λ as

V h
λ = {v ∈ V | π(h)v = λ(h)v, ∀h ∈ h}.

If V h
λ 6= 0, we will say that λ is a weight for π.

1.2 Lie’s Lemma

Lemma 1.1 (Lie’s Lemma). Let g be a Lie algebra and h ⊂ g an ideal both over F algebrically
closed and of characteristic 0. Let π be a representation of g in a finite dimensional F−vector space
V . Then each weight space V h

λ for the restricted representation π|h is invariant under g.

Proof. We wish to show that if v ∈ V h
λ , then π(a)v ∈ V h

λ , ∀a ∈ g. But this is verified if and only if

π(h)π(a)v = λ(h)π(a)v, ∀h ∈ h, ∀a ∈ g. (1)

Now,

π(h)π(a)v = [π(h), π(a)]v + π(a)π(h)v = π([h, a])v + π(a)λ(h)v. (2)

Since h is an ideal, [h, a] ∈ h, then (2) becomes

π(h)π(a)v = λ([h, a])v + π(a)λ(h)v. (3)

Thus, it is sufficient to show that
λ([h, a]) = 0, ∀h ∈ h,

whenever V h
λ 6= 0.

Let us fix a ∈ g and let 0 6= v be an element in V h
λ 6= {0}. We define

Wm = span < v, π(a)v, π2(a)v, . . . , πm(a)v >, ∀m ≥ 0, W−1 = {0}.

Since V is finite dimensional, then there exists N ∈ N s.t. N is the maximal integer for which
all the generators of WN are linearly indipendent. Then we have WN = WN+1 = . . . , hence
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π(a)WN ⊂WN .
We will consider the increasing sequence of subspaces

W−1 = {0} ⊂W0 = {Fv} ⊂ · · · ⊂WN .

Now we claim that ∀m ≥ 0, Wm is invariant under π(h) and furthermore

∀h ∈ h, π(h)π(a)mv − λ(h)π(a)mv ∈Wm−1. (4)

We prove (4) by induction on m. The case m = 0 is true since v ∈ V h
λ .

Suppose that we have proved the assumption for m− 1: we want to prove it for m.

π(h)π(a)mv − λ(h)π(a)mv = [π(h), π(a)]π(a)m−1v + π(a)π(h)π(a)m−1v − λ(h)π(a)mv =
= [π(h), π(a)]π(a)m−1v + π(a)π(h)π(a)m−1v − π(a)λ(h)π(a)m−1v.

By induction hypothesis, we have that

w = π(h)π(a)m−1v − λ(h)π(a)m−1v ∈Wm−2

and π(a)w ∈Wm−1, by construction of the Wi’s.
Moreover, h is an ideal so that [π(h), π(a)] ∈ π(h) and by inductive hypothesis

[π(h), π(a)]π(a)m−1v ∈Wm−1,

thus,
π(h)π(a)mv − λ(h)π(a)mv ∈Wm−1

because it is a sum of elements in Wm−1. This concludes the proof of the inductive step.
We know that WN is invariant both for π(a) and for π(h), ∀h ∈ h. In particular,(4) shows that
∀h ∈ h, π(h) acts on WN as an upper triangular matrix, with in the basis {v, π(a)v, . . . , π(aN )v},

λ(h) ∗ . . . ∗ ∗

0
. . . ∗ . . .

...
0 0 λ(h) ∗ ∗

0 0 0
. . .

...
0 0 0 0 λ(h)


As a consequence of this, we have that

trWN
([π(h), π(a)]) = 0 = trWN

(π[h, a]) = Nλ([h, a])

which implies that λ([h, a]) = 0, since char F = 0. This concludes the proof.

Lie’s Theorem. Let g be a solvable Lie algebra and π a representation of g on a finite dimensional
vector space V 6= 0, over an algebraically closed field F of characteristic 0. Then there exists a weight
λ ∈ g∗ for π, that is V g

λ 6= {0}.
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Proof. We can suppose that g is finite dimensional, since V is finite dimensional and the represen-
tation factors in the following way:

g π //

φ

  A
AA

AA
AA

A End(V )

π(g)

i
::uuuuuuuuu

As g is solvable, also π(g) will be solvable. This follows from the fact that π(g)(n) = π(g(n)) - by
induction on n.
We will prove Lie’s theorem by induction on the dimension of g, dim g = m.
The case dim g = 0 is trivial.
Suppose now that we have proved Lie’s theorem dim g = m− 1, we want to show that the theorem
holds also for g, dim g = m ≥ 1.
Since g is solvable, of positive dimension, g properly includes [g, g]. Since g/[g, g] is abelian, any
subspace is automatically an ideal.
Take a subspace of codimension one in g/[g, g], then its inverse image h is an ideal of codimension
one in g (including [g, g]). Thus, we have the following decomposition of g as a vector space

g = h + Fa.

Now, dim h = m−1 and it is solvable (since an ideal of a solvable Lie algebra is solvable), hence by
inductive hypothesis we can find a non-zero weight space V h

λ 6= {0}, λ ∈ h∗. By Lie’s lemma, V h
λ

is invariant under the action of π(g). In particular, π(a)V h
λ ⊂ V h

λ , hence (since F is algebraically
closed) there exists 0 6= v ∈ V h

λ such that π(a)v = la, for some l ∈ F. We define a linear functional
λ′ ∈ g∗ on g by

λ′(h+ µa) = λ(h) + µl, ∀h ∈ h, l ∈ F.

Thus, by construction, we see that v belongs to V g
λ′ . In particular V g

λ′ 6= {0}.

Exercise. 5.1 Show that we may relax the assumption on F in Lie’s Lemma. Show Lie’s Lemma
under the assumptions that F is algebraically closed and that dimV < char F.

In the proof, we calculated the trace of a certain endomorphism of W ⊆ V to be zero, and also to
be Nq, where N = dimW and q was a quantity that we needed to show was zero. Of course then
if the characteristic of F exceeds the dimension of V , dimW is non-zero in F and we may conclude
q = 0. Given this weaker assumption, the rest goes through unaltered.

Exercise. 5.2 Consider the Heisenberg algebra H3 and its representation on F[x] given by

c 7→ Id,

p 7→ (f(x) 7→ xf(x)), ∀f(x) ∈ F[x],

q 7→ (f(x) 7→ d

dx
f(x)), ∀f(x) ∈ F[x].

Show that the ideal generated by xN , 0 < N = char F, in F[x] is invariant for the representation
of H3 and that the induced representation of H3 on F[x]/(xN ) has no weight.
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(xN ) is a subrepresentation, as it is preserved by the action of p and c, and the action of q annihilates
the xN term when differentiating. Now consider v = a0x0 +a1x1 + . . .+aN−1x

N−1, a representative
of an element of the quotient. All members of the quotient will be represented this way. Now if v
is a weight vector, its derivative must be kv for some k, so that iai = kai−1 for each i < N . On the
other hand, in order that it’s an eigenvector for p, it must have zero constant term, or have pv = 0.
These two statements show easily that v = 0, (as i 6= 0 when i = 1, . . . , N − 1). Thus there is no
weight vector.

Exercise. 5.3 Show the following two corollaries to Lie’s Theorem:

• for all representations π of a solvable Lie algebra g on a finite dimensional vector space V over
an algebraically closed field F, char F = 0, there exists a basis for V for which the matrices
of π(g) are upper triangular;

• a solvable subalgebra g ⊂ glV (V is finite dimensional over an algebraically closed field F,
char F = 0) is contained in the subalgebra of upper triangular matrices over F for some basis
of V .

The second statement is simply an application of the first. We prove the first by induction on the
module’s dimension. It is trivial in dimension 1. Suppose V is a module. Use Lie’s theorem to find
a weight v of V . The quotient module V/Fv, by induction, can given a basis such that g acts by
upper triangular matrices. Taking any preimages of that basis in V , and extending it to a basis of
V by including v, we obtain a basis of V on which g acts by upper triangular matrices.

Exercise. 5.4 Let g be a finite dimensional solvable Lie algebra over the algebrically closed field
F, char F = 0. Show that [g, g] is nilpotent.

If [g/Z(g), g/Z(g)] is nilpotent, so is [g, g], so using the adjoint representation, we may assume g

is a solvable subalgebra of glg. Then by the previous, there is a basis in which g consists of upper
triangular matrices. Then [g, g] consists of strictly upper triangular matrices, and is a subalgebra
of the nilpotent Lie algebras un.
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