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Lecture 4 — Nilpotent and Solvable Lie Algebras

Prof. Victor Kac Scribe: Mark Doss

4.1 Preliminary Definitions and Examples

Definition 4.1. Let g be a Lie algebra over a field F. The lower central series of g is the descending
chain of subspaces

g1 = g ⊇ g2 = [g, g1] ⊇ g3 = [g, g2] ⊇ . . . ⊇ gn = [g, gn−1] ⊇ . . .

while the derived series is

g(0) = g ⊇ g(1) = [g, g] ⊇ g(2) = [g(1), g(1)] ⊇ . . . ⊇ g(n) = [g(n−1), g(n−1)] ⊇ . . .

We note that

(1) g(n) ⊆ gn for n ≥ 1 by induction

(2) All gn and g(n) are ideals in g

Definition 4.2. A lie algebra g is called nilpotent (resp. solvable) if gn = 0 for some n > 0 (resp.
g(n) = 0 for some n > 0).

If g is nilpotent then g is solvable. In fact

{abelian} ( {nilpotent} ( {solvable}

Example 4.1. Let g = Fa+ Fb with [a, b] = b, g(1) = g2 = Fb, g3 = g4 = . . . = Fb but g(2) = 0 so
g is solvable but not nilpotent.

Example 4.2. Let H3 = Fp+ Fq + Fc with [c, g] = 0 and [p, q] = c. Then H2
3 = Fc,H3

3 = 0.

Example 4.3.

gln(F) ⊇ bn = {upper triangular matrices}
⊇ ηn = {strictly upper triangular matrices}

Exercise 4.1. Show bn is a solvable (but not nilpotent) Lie algebra and that [bn, bn] = ηn(n ≥ 2).
Also show that ηn is a nilpotent Lie algebra.

Proof. Consider C = AB −BA for A,B ∈ bn. Say A = (aij), B = (bij), and C = (cij). Then

cij =
n∑
k=1

(aikbkj − bikakj)
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We notice aik = bik = 0 if k < i and bkj = akj = 0 if k > j. Thus

cij =
j∑
k=i

(aikbkj − bikbkj)

Then if i = j, cii = aiibii − biiaii = 0, implying C ∈ ηn, i.e., [bn, bn] ∈ ηn. Define the kth diagonal
to be the set of cij where j − i = k. We show that the kth diagonal contains no nonzero entries
in bk+1

n . We have shown this to be true for k = 0. Now assume it is true up to k = m for some
m ≥ 0. Then any C = [A,B] ∈ bm+1

n is such that A,B ∈ bmn and thus

ci,i+m =
i+m∑
k=1

(aikbk,i+m − bikak,i+m)

Now ajk 6= 0, bjk 6= 0 implies k = i + m while ak,i+m 6= 0, bk,i+m 6= 0 implies k = i but m 6= 0
implies ci,i+m = 0 which is equivalent to saying all diagonals are zero so bn is solvable. Next we
show [bn, bn] ⊇ ηn so that we finally know [bn, bn] = ηn. Consider the basis element eij(j > i) which
is defined to have entry (i, j) equal to 1, and all other entires 0. Then [eij , ejj ] = eijejj − ejjeij =
eijejj = eij ⇒ eij ∈ [bn, bn] ∀eij such that j > i ⇒ [bn, bn] ⊇ ηn This shows that bn is not
nilpotent.

4.2 Simple Facts about Nilpotent and Solvable Lie Algebras

First we note

1. Any subalgebra of a nilpotent (resp. solvable) Lie algebra is nilpotent (resp. solvable).

2. Any factor algebra of a nilpotent (resp. solvable) Lie algebra is nilpotent (resp. solvable)

Exercise 4.2. Let g be a Lie algebra and h ⊂ g be an ideal. Show that if h is solvable and g/h is
solvable, then g is solvable too.

Proof. First we prove that all the homomorphic images of a solvable algebra are solvable. Let g1

be solvable and φ : g1 → g2 a surjective homomorphism. We show

φ(g(i)
1 ) = g

(i)
2

The case i = 0 is trivial. Suppose it holds for some i ≥ 0. Then

φ(g(i+1)
1 ) ⊇ φ([g(i)

1 , g
(i)
1 ])

= [φ(g(i)
1 ), φ(g(i)

1 )]

= [g(i)
2 , g

(i)
2 ]

= g
(i+1)
2

Thus if g1 is solvable, so is g2. Now suppose h ⊆ g is a solvable ideal, say h(n) = 0, and (g/h)(m) = 0.
Consider the canonical homomorphism
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π : g→ g/h From the previous result,

π(g(m)) = (g/h)(m) = 0⇒ g(m) ⊆ I

Then (g(m))(n) = g(m+n) ⊆ I(n) = 0 which means that g is solvable.

The last exercise does not hold if we everywhere put “nilpotent” in place of “solvable,” as the
following example shows.

Example 4.4. Suppose g= Fa+Fb, [a, b] = b. Fb ⊂ g is an ideal, Fb and g/Fb are 1-dimensional
and hence abelian and nilpotent. But g is not nilpotent.

Theorem 4.1. (a) If g is a nonzero nilpotent Lie algebra then Z(g) is nonzero

(b) If g is a finite-dimensional Lie algebra such that g/Z(g) is nilpotent, then g is nilpotent.

Proof. (a) Take N > 0 minimal such that gN = 0. Since g 6= 0, N ≥ 2, but then gN−1 6= 0 and
[g, gN−1] = gN = 0, so gN−1 ⊂ Z(g).

(b) g = g/Z(g) is nilpotent, i.e., gn = 0 for some n which implies gn ⊂ Z(g), but then gn+1 =
[g, gn] ⊂ [g, Z(g)] = 0.

4.3 Engel’s Characterization of Nilpotent Lie Algebras

Theorem 4.2. Let g be a finite-dimensional Lie algebra. Then g is nilpotent iff for each a ∈ g,
(ad a)n = 0 for some n > 0. One may always take n = dimg.

proof If g is nilpotent then gn+1 = 0 for some n. In particular, (ad a)nb = 0 for all a, b ∈ g sinc
this is a length (n+1) commutator. For the converse: The adjoint representation gives an injective
homomorphism g/Z(g) ↪→ glg and by assumption the image consists of nilpotent operators. So by
Engel’s Theorem (from last lecture), g/Z(g) consists of strictly upper triangular matrices in the
same basis. Therefore g/Z(g) is nilpotent and hence g is nilpotent as well.

4.4 How to Classify 2-Step Nilpotent Lie Algebras

Let g be n-dimensional and nilpotent with Z(g) 6= 0 so g/Z(g) is nilpotent of dimension n1 < n.

Definition 4.3. • g is 1-step nilpotent if it is abelian

• g is 2-step nilpotent if g/Z(g) is abelian

• g is k-step nilpotent if g/Z(g) is (k − 1)-step nilpotent

Let g be 2-step nilpotent so V = g/Z(g) is abelian. Consider the bilinear form

B: V ×V → Z(g)
(a,b) 7→ [ã, b̃]
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where ã and b̃ are preimages of a, b under g→ V (B is an alternating form, i.e., B(x, x) = 0 for all
x).

Exercise 4.3. Show that 2-step nilpotent Lie algebras are classified by such nondegenerate alter-
nating bilinear forms.

Proof. Suppose g is a 2-step Lie algebra so g/Z(g) is abelian. Let W = Z(g) and V ∼= g/Z(g). We
check that the form φ : (v1, v2)→ [v1, v2] is nondegenerate and alternating. It is clearly alternating
by the definition of the bracket, and nondegenerate since if [v, v] = 0 then v ∈ Z(g) ⇒ v = 0. For
the other direction, given a triple (v, w, φ) such that φ : v×v → w, consider g = v⊕w. Then 2-step
nilpotent Lie algebras with bracket [v+w, v

′
+w

′
] = φ(v, v

′
). This is the case because the bracket is

alternating by the definition of φ, the bracket satisfies the Jacobi identity (see the next paragraph),
and since the bracket is nondegenerate, V ∼= g/Z(g). To check that the bracket satisfies the Jacobi
identity, check that

[v1, [v2, v3]] + [v2, [v3, v1] + [v3, [v1, v2]] = φ(v1, φ(v2, v3)) + φ(v2, φ(v3, v1)) + φ(v3, φ(v1, v2))
= φ(v1, 0) + φ(v2, 0) + φ(v3, 0) = 0

We must show these maps are isomorphisms. Let α : g→ (v, w, φ) and β : (v, w, φ)→ g. We check
that αβ ∼= 1(v,w,φ) and βα ∼= 1g. We’ve seen that β sends a triple to the Lie algebra v⊕w where w is
the center of the form [v+w, v

′
+w

′
] = φ(v, v

′
) ∈ w which gets mapped to (v⊕w,w, φ) ∼= (v, w, φ)

The other direction g→ (g/Z(g), Z(g))→ g/(Z(g)⊕ Z(g)) giving a bijection.

You can show that the problem of classifying all nilpotent algebras is equivalent to problems that
are known to be impossible. However, you can classify things in some special circumstances.

Exercise 4.4. Show that if Z(g) = Fc and g is 2-step nilpotent, then g is isomorphic to H2n+1 =
(Fp1 + Fp2 + . . . + Fpn) + (Fq1 + Fq2 + . . . + Fqn) + Fc with [pi, qj ] = δij , [pi, pi] = 0, [qi, qj ] = 0,
and [c,H2k+1] = 0.

Proof. From the previous exercise there exists a skew-symmetric form B on V := g/Fc, B(v1, v2) =
[v1, v2] and just as above it is easy to check that it is nondegenerate. But for any non-degenerate
skew-symmetric bilinear form B on V over any field F there exists a basis pi, qi such that B(pi, qj) =
δij , B(pi, pj) = 0, and B(qi, pj) = 0. Indeed, pick arbitrary p1 ∈ V and a q1 such that B(p1, q1) = 1,
and let V ⊥1 be the orthocomplement to Fp1 +Fq1 in V . Continue by induction on dimV . Then look
at the preimages of these pi and qi in the space g, and note that they satisfy the same commutation
relations. This implies that H = (Fp1 + Fp2 + . . . + Fpn) + (Fq1 + Fq2 + . . . + Fqn) + Fc with the
desired commutation relations.

4


