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Definition 3.1. Let g be a Lie algebra over a field F and V' a vector space over F. A representation
of g in V is a homomorphism 7 : g — gly. In other words, it is a linear map a — 7(a) from g to
the space of linear operators on V' such that 7([a,b]) = w(a)w(b) — w(b)w(a).

Example 3.1. Trivial representation of g in V' where m(a) = 0 for all a.
Example 3.2. Adjoint representation of g in g : a — ada.
Let’s check that it is in fact a representation. We must show that

ad|a,b] = (ada)(adb) — (adb)(ada).
Applying both sides to ¢ € g, we check

[[a, 8], ] = [a, [b,]] = [b, [a, €]].

By skew-symmetry, this is just the Jacobi Identity.
Definition 3.2. The center of a Lie algebra g is denoted Z(g) = {a € gl|[a, g] = 0}.
Clearly, Z(g) is an ideal of g.
Exercise 3.1. Show Z(gl,(F)) =FI,, Z(sl,(F)) = 0 if char F { n.
Proof. This is clear when n = 1 so assume otherwise. Suppose A = (a;;) € Z(gl,(F)) and there

exists a;; # 0 with i # j. Let B = (b;;) and consider AB = C' = (¢;5) and BA = C" = (c¢;) . We
wish to show C' # C’ for some B. We have

n
ci1 =Y airbi
k=1
and

n

/

Ci1 = E bixagi.
k=1

Define B by bj; = 1 and by = 0 for all £ # j. We then have ¢;; = a;; # 0 and that the ith row of B
only has the restriction b;; = 0. We choose the remaining entries of the row so that ¢; # ¢i1 = a;;.
Therefore a;; = 0 for all i # j. We observe that these restrictions still allow B to have trace zero
and determinant non-zero.

Now suppose without loss of generality that a1 # ase. Consider

n
c12 = ) a1k
k=1

and let bj2 = 1 and bjz = 0 for all 4 # 1. These restrictions on B still allow B € si,(F) C gl,(F).
Clearly F1,, C Z(gl,(F)), so by above FI,, = Z(gl,,(F)). As well, since we allowed B € sl,,(F) and
tr(A) = nayy, if char F {n, then Z(sl,(F)) = 0. O



Proposition 3.1. The adjoint representation defines an embedding of g/Z(g) in glg.

Proof. ad : g — glg is a homomorphism; Ker ad = Z(g). Hence ad induces an embedding
9/Z(g) — gl,, since g/ Ker ¢ = Im ¢. O
Theorem 3.2. Ado’s Theorem

Any finite dimensional Lie algebra embeds in gl,,(F) for some n. [Presented without proof.]
Remark 1. Proposition 3.1 proves Ado’s Theorem in the case Z(g) = 0.

Exercise 3.2. Let dim g < oo. Show dim Z(g) # dim g — 1.

Proof. Suppose dim Z(g) = dimg — 1 and pick any non-zero x € g\ Z(g). Clearly,  commutes

with Z(g) and with cr which implies € Z(g). This is a contradiction and therefore dim Z(g) #
dimg — 1.

O

Definition 3.3. We define Heisa, 11 to be the Lie algebra with basis {p;, ¢;, ¢} where [p;,¢;] = c =
—lgi,pi],1 <i <mn, and all other bracketed pairs are 0.

Exercise 3.3. Classify all finite dimensional Lie algebras for which dim Z(g) = dim g — 2. Let
dimg = n and show either g & Ab,_3@ Heisz or g = Ab,_s ® h where b is the two-dimensional
non-abelian Lie algebra.

Proof. Suppose dim Z(g) = dim g—2, then g/Z(g) may be generated by two elements, and consider
their preimages, say p and ¢. Let [p,q] = ¢ # 0 (else p,q € Z(g). Suppose ¢ € Z(g), then in this
case g = Ab,_o @ Heiss. Assume otherwise, that ¢ = z + app + a4q (without loss of generality,
assume a, # 0). We have [c,q] = ap[p,q] = ape. Let ¢ = é, then ¢, ¢’ are linearly independent

and [c, ¢'] = ¢ which shows g & Ab,,_2® two-dimensional non-abelian Lie algebra. O
Constructions of representations from given ones.
Definition 3.4. Representation from direct sum
Given representations 71, mg of g in V;. We have m @m of gin Vi@ Va 1 (m1 @ me)(a) = m1(a) ®ma(a).

Definition 3.5. Subrepresentation and factor representation

Given a representation of w of g in V', if U C V is a subspace invariant with respect to all operators
m(a),a € g, we have the subrepresentation 7y of g in U : a — 7(a)|y.

Moreover, the factor representation 7y, of g in V/U : a — 7(a)|v,u.

Definition 3.6. A linear operator A in a vector space V is called nilpotent if AN = 0 for some
positive integer N.

Exercise 3.4. Show if dim V < oo, then A is nilpotent if and only if all eigenvalues of A are zero.
Proof. If X\ is an eigenvalue of A, then AV is an eigenvalue of AN = 0, and therefore A = 0.

Conversely, suppose all eigenvalues of A are zero, then the characteristic polynomial of A is ", and
by Cayley-Hamilton A™ = 0. O



Lemma 3.3. Let A be a nilpotent operator in a vector space V', then
(a) There exists a non-zero v € V' such that Av = 0.

(b) ad A is a nilpotent operator on gly .

Proof. (a) Consider minimal N > 0 such that AV = 0, then AN~ = 0. Choose a non-zero vector
v € ANV £ 0. Then Av = 0.

Remark 2. ad A=L4— Ry
Ls(B)=AB, R4(B) = BA
LsRp = RpL 4, due to the associativity of the product of operators. Hence

(ad A)M = iw: (?) LR

J=0

(b) Now we have

2N on .
ad®B =) ( , )AJBAW—J =0
s J
Ji
since either j > N or 2N — j > N.

O]

Theorem 3.4. Engel’s Theorem Let V be a non-zero vector space and let g € gly be a finite
dimensional subalgebra which consists of nilpotent operators. Then there exists a non-zero vector
v €V such that Av =0 for all A € g.

Proof. By induction on dim g.
If dimg = 1, then g = Fa for a € gly. By Lemma 3.3(a), Engel’s Theorem holds.

We may assume dimg > 2 and let h be a maximal proper subalgebra of g. Since Fa is always a
subalgebra, we have that dim h > 1. Consider the adjoint representation of g (on itself) and consider
its restriction to b, so we have ad : h — gl is an invariant subspace for the representation (since b
is a subalgebra ). Therefore, we may consider the factor representation in g/h. Then 7(h) C glg/y
and dim7(h) < dim b < dim g. Moreover, 7(h) consists of nilpotent operators by Lemma 3.3(b).

We may apply the inductive assumption. We have there exists a € g/h, a non-zero vector such
that m(h)a =0 for all h € . If a € g is an arbitrary preimage of a, we get that [h, a] C h and since
a#0,a¢bh. Hence, h @ Fa is a subalgebra of g. This subalgebra is larger than b, but h was a
maximal proper subalgebra of g, which implies h @ Fa = g.

By inductive assumption, there exists non-zero v € V such that Av = 0 for all A € h. Let 1V} denote
the space of all vectors v € V satisfying Av = 0. We claim that aVp C Vp; indeed: Vo = {v | hv = 0}.
So if v € V}, then we have h(av) = [h,a] + ah(v) = 04+ 0 = 0. By Lemma 3.3(a) there exists a
non-zero vector v € Vy “killed” by a. Therefore v is “killed” by h and a, and hence g. O

Remark 3. If we assume dimV < oo, then g is finite dimensional since dimg < (dim V)% < oo.
Therefore Engel’s Theorem holds if we only assume dim V' < oco.



Corollary 3.5. Let w : g — gly be a representation of a Lie algebra g in a finite dimensional
vector space V' such that w(a) is a nilpotent operator for all a € g. Then there exists a basis of V
in which all operators m(a), a € g are strictly upper triangular matrices.

Proof. Induction on dim V.

By Engel’s Theorem, there exists a non-zero vector ej, such that m(e;) = 0 for all a € g. Since Fe;
is an invariant subspace, we consider the factor representation of g in V/Fe;. Apply the inductive
assumption to get the basis €3, ..., €, of V/Fey, in which all matrices of 7T|V/]F€1 are strictly upper
triangular. Take eq, ..., e, preimages of €3, ..., €,. Then in the basis ey, ..., e2 of V', all matrices m(g)
are strictly upper triangular. ]

Exercise 3.5. Construct in sl3(F) a two-dimensional subspace consisting of nilpotent matrices,
which do not have a common eigenvector.

Proof. Consider the matrices

010 0 00
A=10 0 1 B=| -1 00
0 00 0 10

Then the subspace generated by A and B is two dimensional. A has eigenspace generated by
(1,0,0)! and B has eigenspace generated by (0,0,1)!. Therefore A and B have no common eigen-
vectors. Any linear combination of A, B say aA + BB has characteristic polynomial —\® and
therefore is nilpotent.

O



