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Lecture 2 — Some Sources of Lie Algebras
Prof. Victor Kac Scribe: Michael Donovan

From Associative Algebras

We saw in the previous lecture that we can form a Lie algebra A_, from an associative algebra A,
with binary operation the commutator bracket [a, b] = ab— ba. We also saw that this construction
works for algebras satisfying any one of a variety of other conditions.

As Algebras of Derivations

Lie algebras are often constructed as the algebra of derivations of a given algebra. This corresponds
to the use of vector fields in geometry.

Definition 2.1. For any algebra A over a field F, a derivation of A is an F-vector space endo-
morphism D of A satisfying D(ab) = D(a)b + aD(b). Let Der(A) C gl be denote the space of
derivations of A.

For an element a of a Lie algebra g, define a map ad(a) : g — g, by b — [a, b]. This map is referred
to as the adjoint operator. Rewriting the Jacobi identity as

[a, [b, ] = [[a, 0], ] + [b, [a, c]], (1)

we see that ad(a) is a derivation of g. Derivations of this form are referred to as inner derivations
of g.

Proposition 2.1.

(a) Der(A) is a subalgebra of gl (with the usual commutator bracket).

(b) The inner derivations of a Lie algebra g form an ideal of Der(g). More precisely,
[D,ad(a)] = ad(D(a)) for all D € Der(g) and a € g. (2)
Proof of (b): We check (2) by applying both sides to b € g:
[D,ad(a)]b = Dla,b] — [a, Db] = [Da,b] = ad(Da)b,
where the second equality holds as D is a derivation. O

Exercise 2.1. Prove (a).



Solution: The derivations of A are those maps D € gl, which satisfy D(ab) — D(a)b—aD(b) =0
for all @ and b in A. For fixed a and b, the left hand side of this equation is linear in D, so that
the set of endomorphisms satisfying that single equation is a subspace. The set of dervations is the
intersection over all ¢ and b in A of these subspaces, which is a subspace.

We are only left to check that the bracket of two derivations is a derivation. For any a,b € A and
Dy, Dy € Der(A) we calculate:

[D1, D2](ab) = D1(D2(a)b+ aD2(b)) — Da(D1(a)b + aD1(b))
= D1Ds(a)b+ Dy(a)D1(b) + D1(a)Da(b) + aD1D2(b)
—{DyD1(a)b+ D1(a)D2(b) + D2(a)D1(b) + aD3D1(b)}
= Dy Dy(a)b — DyDy(a)b + aDyDa(b) — aDaDy (b)
= [D1, D2)(a)b + a[Dy, D2](b).

Thus the derivations are closed under the bracket, and so form a Lie subalgebra of gl 4. O

From Poisson Brackets

Exercise 2.2. Let A = F[zy,...,x,], or let A be the ring of C*° functions on 1, ..., z,. Define a
Poisson bracket on A by:

of %{xi,xj}, for fixed choices of {z;,z;} € A. (3)
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Show that this bracket satisfies the axioms of a Lie algebra if and only if {z;,;} = 0, {z;,z;} =
—{zj,2;} and any triple z;, z;, xj, satisfy the Jacobi identity.

Solution: If the Poisson bracket defines a Lie algebra structure for some choice of values {z;,z;},
then in particular, the axioms of a Lie algebra must be satisfied for brackets of terms z;. The
interesting question is whether the converse holds. We suppose then that the {x;,x;} are chosen
so that {z;,z;} = —{z;,2;}, and so that the Jacobi identity is satisfied for triples x;, x;, z.

The bilinearity of the bracket follows from the linearity of differentiation, and the skew-symmetry
follows from the assumption of the skew symmetry on the z;.

At this point we introduce some shorthands to simplify what follows. If f is any function, we write
fi for the derivative of f with respect to x;. When we are discussing an expression e in terms of
three functions f, g, h, we will write CS(e) for the ‘cyclic summation’ of e, the expression formed
by summing those obtained from e by permuting the f, g, h cyclically. In particular, the Jacobi
identity will be CS({f,{g,h}}) = 0.

First we calculate the iterated bracket of monomials z;:

{zs, {zj, 1} } = Z{:L‘j, xr hi{xi, 71} (an example of the shorthands described).
l

Now the iterated bracket of any three polynomials (or functions) f, g and h is:

{h AL, 9}y = Y [fagihn + gt {wo i Hmr, miy + Y figiha{wi, i hi{wn, w1}
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By the assumption that the Jacobi identity holds on the z;, we have (for any i, j, k):

> CS(figihi){wi, i hi{ae 1} = 0,
;

for cyclicly permuting the f, g, h corresponds to cyclicly permuting the i, j, k (in the opposite order).
Thus we have:
CS({h.A{L,9}}) = > CS(fagjhe + gy filu){wi, x5 Haw, 1}
i,Gkol

The remaining task can be viewed as finding the {z,zg}{z,, x5} coefficient in this expression,
where we substitute all appearences of {3, 24} for —{zq, x5}, and so on. To do so, we tabulate
all the appearances of terms which are multiples of {zn,2g}{z+,25}. We may as well assume here
that a < 8 and v < 4.

i j k | multiple of {zo,2g}{z, 25} || ¢ j k [ | multiple of {zq,zg}{x,, x5}
a B v 9o + fasgshy + gps faly vy 0 a B + fy895ha + 953 frha
B a v ¢ — fpsgahy — gas fphy 6 v a B — f589vha — gypfsha
a B o v — fargphs — 9y fahs v 0 B « — fra95hs — gsafyhp
B « 0 Y + fﬁygahé + goryfﬂhé o Y B « + f6ag'yhﬂ + g'yoaféhﬂ
a B v 0 + Gashs fy + hpsga fy v 0 oa B + gyhs fo + hspgy fao
B oa v o — 9gpshafy — hasgp fy 6 v a B — 96phy foa — hapgsfa
a f3 0 Y - goryhﬁfé - hﬁygafé Y 0 /6 « - g’yahéfﬁ’ - h&xg’yfﬂ
5 a 9 Y + g,B'yha 5+ ha'ygﬁfé 0 i B a + géah'y 5] + h'yagéfﬂ
a B v 0 + has f39y + fpshagy ¥ 0 a p + hyg fs9a + f58h~9a
B a v ¢ — hgs fagy — fashpgy o6 v a B — hsgfy9a — fr8hsga
« B o v - ha'yfﬁgé - fﬁ'yha.gci Y o 5 a - h’yaf&.gﬂ - f&ah’ygﬂ
/B a 0 v + hﬁ“{fag5 + fa’yhﬁgé o i B « + h&af’ygﬂ + fvah&gﬂ

Of course, if « = v and § = §, there is repetition, so that the right hand columns of this table must
be ignored. Whether or not this is the case, the reader will be able to arrange the entries of this
table into cancelling pairs. d

Example 2.1. Let A = Flpi,...,pn,q1,.--,qn]. Let {pi,pj} = {a@,¢;} = 0 and {ps,q;} =
—{4i,pj} = 0;;. Both conditions clearly hold, and explicitly:

N~ 9f 99 09 0f
gt = Z Op; 0¢;  Op; Og;

1

is a Lie algebra bracket, important in classical mechanics.

Via Structure Constants

Given a basis eq,...,e, of a Lie algebra g over F, the bracket is determined by the structure
constants cfj € I, defined by:
lei e;] = Zcfjek.
k

The structure constants must satisfy the obvious skew-symmetry condition (cfz =0 and cfj = —c?i),

and a more complicated (quadratic) condition corresponding to the Jacobi identity.



Definition 2.2. Let g;, go, be two Lie algebras over F and ¢ : g1 — g2 a linear map. We say that
¢ is a homomorphism if it preserves the bracket: ¢([a,b]) = [¢(a), ¢(b)], and an isomorphism if it is
bijective. If there exists an isomorphism ¢, we say that g; and go are isomorphic, written g; = go.

Exercise 2.3. Let ¢ : g1 — g2 be homomorphism. Then:

(a) ker is an ideal of g;.
(b) im ¢ is a subalgebra of go.
(c) im ¢ = g1/ ker .

Solution: Let ¢ : g1 — g2 be homomorphism of Lie algebras. Then:

(a) The kernel ker ¢ is an subspace of g1, as in particular ¢ is F-linear. Furthermore, if z € ker ¢
and y € g1, we have ¢([z,y]) = [p(z), v(y)] = [0,¢(y)] = 0. Thus [z,y] € ker ¢. This shows
that ker ¢ is an ideal of g.

(b) The image im ¢ is a subspace, again as ¢ is F-linear. Now for any w,v € im ¢, we may write
u = p(z) and v = p(y) for elements =,y € g1. Then [u,v] = [p(z), (y)] = ¢([z,y]) € im .
Thus the image is a subalgebra.

(¢) Consider the map 1 : g1/ ker p — im ¢ given by x + ker p — (z). We must first see that 1
is well defined. If z + ker ¢ = 2’ + ker ¢, then 2’ — z € ker ¢, so that:

p(z) = p(x) + @’ — 2) = p(x) + (2') — p(z) = ().

Thus our definition of ¢ does not depend on choice of representative, and 1) is well defined.
It is trivial to see that ¢ is a homomorphism. Now suppose that x + ker¢ € kervy. Then
o(z) = 0, so that x € kerp, and = + kerp = 0 4 ker p. Thus 9 is injective, and that 9 is
surjective is obvious. Thus v is an isomorphism g;/ker p — im ¢. O

As the Lie Algebra of an Algebraic (or Lie) Group

Definition 2.3. An algebraic group G over a field F is a collection { P, }aes of polynomials on the
space of matrices Mat,, (F) such that for any unital commutative associative algebra A over I, the
set

G(A) := {g € Mat,(A) | g is invertible, and P,(g) =0 for all a € I}

is a group under matrix multiplication.

Example 2.2. The general linear group GL,,. Let {P,} = 0, so that GL,,(A) is the set of invertible
matrices with entries in A. This is a group for any A, so that GL,, is an algebraic group.

Example 2.3. The special linear group SL,,. Let {P,} = {det(x;;) — 1}, so that SL, (A) is the set
of invertible matrices with entries in A and determinant 1. This is a group for any A, so that SL,
is an algebraic group.

Exercise 2.4. Given B € Mat,(F) , let O, 5(A) = {g € GL,(A) : gT Bg = B}. Show that this
family of groups is given by an algebraic group.



Solution: For any unital commutative associative algebra A over F, the set
On,B(A) = {g € GL,(A) : g' Bg = B}
is a group under matrix multiplication, as if g, h € O, p(A) we have:
(gh)TB(gh) = hTgTBgh = h'Bh = B, and (g*1)T Bg~' = (gT)‘1 (9"Bg)g~' = B.

We then only have to show that the condition g* Bg = B can be written as a collection of polynomial
equations in the entries g;; of the matrix g, with coefficients in F. This is obvious — we have one
polynomial equation for each of the n? entries of the matrix, and the coefficients depend only on
the entries of B. O

Definition 2.4. Over a given field IF, define the algebra of dual numbers D to be
D :=TFe]/(e) ={a+be|abeTF, =0}

We then define the Lie algebra Lie G of an algebraic group G to be
Lie G:={X € gl,(F) | I, + eX € G(D)}.

Example 2.4. (1) Lie GL,, = GL,(F), since (I, + ¢X) ! = I,, — eX. (I, — eX approximates
the inverse to order two, but over dual numbers, order two is ignored).

(2) Lie SL,, = sl,(F).

(3) Lie On,B = Ofn B-
Exercise 2.5. Prove (2) and (3) from example 2.4.
Solution: For (2), We need only prove the formula det(l,, + eX) = 1+ etr (X). It is trivial when
n = 1, and we proceed by induction on n. Consider the matrix I, + X, and the cofactor expansion
of the determinant along the final column. If i < n, the (i,n) entry is a multiple of €, and so is every
entry of the i column of the matrix obtained by removing the row and column containing (i, n).
Thus the corresponding cofactor has no contribution to the overall determinant. The determinant is

therefore 1+ €X,,,, multiplied by the minor corresponding to (n,n). By induction, the determinant
is (14 €Xpn)(1 4+ €(tr (X) — Xpn)). The result follows.

For (3), the following calculation gives the result:
(1+eX)TB(1+eX)=B+eX"B+eXTB+EXT"BX =B+ ¢X'B+ X'B). O

Theorem 2.2. Lie G is a Lie subalgebra of gl,,(IF).

Proof. We first show that Lie G is a subspace. Indeed, X € Lie G iff P,(I, + €X) = 0 for all a.
Using the Taylor expansion:

Po(I, + €X) = +Z

) €Ty
8% 7

as €2 = 0. Now as P,(I,) = 0 (every group contains the identity), this condition is linear in the
x;j, so that Lie G is a subspace.



Now suppose that X,Y € Lie G. We wish to prove that XY — Y X € Lie G. We have:
I+ eX € G(Fle]/(€)), and I, + €Y € G(F[€]/((€)%)).
Viewing these as elements of G(Fle, €/]/(€2, (¢')?)), we have
(In+ eX)In + €Y, + eX) WL, + €Y) L =1, + (XY = YX) € G(Fle, €]/(€2, (€)?)).

Hence I, + €€/ (XY — Y X) € G(Fle€']/((e€)?)) = G(D), so that XY — Y X € Lie G.



