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Let g be as in the last lecture - finite dimesional semisimple lie algebra. Let h be a Cartan subalgebra,
and Π = {α1, . . . , αr} ⊂ ∆+ ⊂ ∆, as before, a system of simple roots. We have the triangular
decomposition g = n−+h+n+, b = h+ +n+, with b - a Borel subalgebra, and [b, b] = n+. Let (·, ·)
be a nondegenerate invariant symmetric bilinear form on g, let ρ = 1

2Σα∈∆+α. Let {Ei, Hi, Fi} be

the Chevalley generators satisfying Hi = 2ν−1(αi)
(αi,αi)

, Ei ∈ gα, Fi ∈ g−α and such that < Ei, Hi, Fi >

form the standard basis of sl2(F). Define the subset P+ = {λ ∈ h∗|λ(Hi) ∈ Z+ for all i = 1, . . . r}

Theorem 25.1. (Cartan) The g-modules {L(Λ)}Λ∈P+ are, up to isomorphism, all irreducible finite-
dimensional g-modules. (Recall from previous lectures that L(Λ) is the irreducible heigest weight
module with heighest weight λ.)

Theorem 25.2. (H.Weyl Dimension formula) If Λ ∈ P+, then dimL(Λ) =
∏

α∈∆+

(Λ+ρ,α)
(ρ,α)

Example 25.1. g = sl2(F) =< E,F,H >. Then all Verma modules M(Λ), where Λ ∈ h∗ = F
since h∗ = FH, have basis F JvΛ,j ∈ Z+. By the key sl2 lemma, M(Λ) is irreducible unless
Λ = Λ(H) ∈ Z+ In the latter case (by the same lemma) EFΛ+1vΛ = 0, hence FΛ+1vΛ is a singular
vector. So M(Λ) is not irreducible. But L(Λ) = M(Λ)/U(sl2(F)FΛ+1vΛ is irreducible since F jvΛ,
0 ≤ j ≤ m = Λ(H) are independent. So by fundamental sl2 lemma, dim(L(Λ)) = m+ 1

Proof of Theorem 25.1. Recall that σi =< Ei, Fi, Gi >' sl2(F ) and vΛ ∈ L(Λ) satisfies Ei(vΛ) =
0, Hi(vΛ) = Λ(Hi)vΛ. Hence by fundamental sl2 lemma, Λ(Hi) ∈ Z+. So dimL(Λ) <∞⇒ Λ ∈ P+.
Coversely, if Λ ∈ P+, then by Theorem 2, dim(Λ) <∞.

Lemma 25.1. Recall ρ = 1
2

∑
α∈∆+

α. Then ρ(Hi) = 1

Proof. Consider the reflection from the Weyl group corresponding to αi:

rαiρ = rαi(
1
2
αi +

1
2

∑
α∈∆\{αi}

α) = ρ− αi

But rαi(λ) = λ− λ(Hi)αi hence ρ(Hi) = 1.

Example 25.2. g = sl2, Then Λ(H) = m means that Λ = mρ. So

dimL(Λ) =
(m+ 1)(α, α)

(α, α)
= m+ 1

Example 25.3. g = sl3. We have Π = {α1, α2}, (αi, αj) =
(

2 −1
−1 2

)
, ρ = α1 + α2, ρ(αi) = 1,

Λ = m1Λ1 +m2Λ2, where (Λi, αj) = δij . By Cartan’s theorem, dimL(Λ) <∞ iff m1,m2 ∈ Z+. We
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compute (Λ + ρ, α1) = m1 + 1, (Λ + ρ, α2) = m2 + 1, and (Λ + ρ, α1 + α2) = m1 + m2 + 1, so we
have

dimL(Λ) =
(m1 + 1)(m2 + 1)(m1 +m2 + 1)

2

In general, we may write Λ = ΣikiΛi, where Λi(Hj) = δij . Then dimL(Λ) <∞ iff ki ∈ Z+. These

ki are called labels of the heighest weight. They are depicted on the Dynkin diagram:
m1 m2i i

We’ll deduce Weyl’s Dimensional formula from the Weyl character formula

Definition 25.1. Let M be a g-module which is h-diagonalizable, let M =
⊕
λ∈h∗

Mλ, then

ch(M) =
∑
λ

(dimMλ)eλ

Here eλeµ = eλ+µ, e0 = 1

Theorem 25.3. (Weyl Character Formula) Let R =
∏

α∈∆+

(1− e−α). if Λ ∈ P+ then

eρRchL(Λ) =
∑
w∈W

(detw)ew(Λ+ρ) (∗)

We’ll first derive Theorem2 from Theorem3, then prove Theorem3.
Given µ ∈ h∗, consider the following linear map from linear comibnation of the eλ to functions of
t that Fµ(eλ) = et(λ,µ).Apply Fµ to both sides of (*), we have

et(ρ,ρ)
∏

(1− e−t(ρ,α))FρchL(Λ) =
∑
w∈W

(detw)et(w(Λ+ρ),w−1(ρ))

=
∑
w∈W

(detw)et(w(Λ+ρ),w(ρ))

= FΛ+ρ

∑
w∈W

(detw)ew(ρ)

Now we can value the sum.Note that L(0) is the trivial 1-dim g-module, hence chL(0) = 1. There-
fore (*) implies

eρR =
∑
w∈W

(detw)ew(ρ) (∗∗)

The above equality becomes

et(ρ,ρ)(Fρch(L(Λ))) =
FΛ+ρe

ρR∏
α∈∆+

(1− e−t(ρ,α))
=
∏
α∈∆+

(1− e−t(Λ+ρ,α))
(1− e−t(ρ,α))

As t→ 0, et(ρ,ρ) → 1. hence

LHS = Fρch(L(Λ)) =
∑
λ

dimL(Λ)et(ρ,Λ) = dimL(Λ)

And by L’Hospitals rule,

lim
t→0

RHS = lim
t→0

∏
α∈∆+

(λ+ ρ, α)
(ρ, α)

e−t(λ+ρ,α)

e−t(ρ,α)
= RHS of Weyl dimension fomula
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Proof of the Weyl’s character formula.

Lemma 25.2. If Λ(Hi) ∈ Z+, then chL(Λ) is ri-invariant.

Proof. By the key sl2 lemma, EiF
Λ(Hi)+1
i vΛ = 0, EjF

Λ(Hi)+1
i vΛ = 0 for j 6= i since Ej and Fi

commute. So F
Λ(Hi)+1
i vΛ is a singular vector of L(Λ) and since L(Λ) is irreducible, so it has no

singular weights other than Λ, we conclude that FΛ(Hi)+1
i vΛ = 0.

But L(Λ) = U(g)vΛ, hence for v ∈ L(Λ) we conclude that FNi v = 0 for N � 0 Also obviously
ENi v = 0 for N � 0.

It follows that any v ∈ L(Λ) lies in a sl2-invariant finite dimensional subspace. Hence by Weyl’s
complete reducibility theorem L(Λ) is a direct sum of irreducible sl2-modules. So it suffices to prove
that the character of a finite dimensional irreducible sl2-modules is rαi-invariant. Note that

chL(mρ) = emρ + e(m−2)ρ + . . .+ e−mρ

Since rαi(ρ) = ρ− rαi , the character is rαi-invariant. Hence the lemma holds for L(Λ) as well.

Lemma 25.3. RchM(Λ) = eΛ

Proof. We know from last lecture that vectors Em1
−β1

. . . EmN
−βN

form a basis of M(Λ). Hence

chM(Λ) =
∑

(m1,...mN )∈ZN
+

eΛ−m1β1...−mNβN

= eΛ
∑

(m1,...mN )∈ZN
+

eΛ−m1β1...−mNβN

=
eΛ∏

α∈∆+

(1− e−α)
(1)

by geometric progression.

Lemma 25.4. w(eρR) = (detw)eρR for any w ∈W

Proof. Since W is generated by rαi , it suffices to check rαi(e
ρR) = −eρR. Indeed, we can rewrite

R as
R = (1− eαi)

∏
α∈∆+\αi

(1− e−α)

Note that
∏

α∈∆+\αi

(1− e−α) is rαi-invariant, so by Lemma 1

rαi(e
ρR) = eρ−αi(1− eαi)

∏
α∈∆+\αi

(1− e−α)

= eρ(e−αi − 1)
∏

α∈∆+\αi

(1− e−α)

= −eρR (2)

as wanted.
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Lemma 25.5. Let Λ ∈ h∗R and let V be a highest weight module with highest weight Λ. Let
D(Λ) = {Λ − Σkiαi, ki ∈ Z+}. Then chV = Σλ∈B(Λ)aλ chL(λ), where B(Λ) = {λ ∈ D(Λ)|(Λ +
ρ,Λ + ρ) = (λ+ ρ, λ+ ρ) and aΛ = 1, aλ ∈ Z+}.

Proof. Proof is by induction on dimV =
∑

λ∈B(Λ)

dimVλ < ∞ due to Theorem2(h) from last lecture

that |B(Λ)| < ∞ is finite. If
∑

λ∈B(Λ)

= 1 then Λ is the only singular weight hence by Theorem2(c)

from last lecture that V = L(Λ) so chV = chL(Λ). If there another singular vector vλ, λ 6= Λ, let
U = U(g)vλ and consider the following exact sequence of g-modules

0→ U → V → V/U → 0

Then ch(V ) = ch(U) + ch(U/V ), now we apply the induction assumption to each of the terms.

Lemma 25.6. In the assumptions of Lemma 5 and V = L(Λ) is irreducible, we have chV =
Σλ∈B(λ)bλchMλ, where bΛ = 1 and bλ ∈ Z.

Proof. By Lemma 5 we have for any µ ∈ B(Λ): chM(µ) =
∑

λ∈B(µ)

aλ,µchL(λ). Let B(Λ) = {Λ =

λ1, . . . , λr}. Order them in such a way that λi−λj /∈ {
∑
i
kiαi|ki ∈ Z+} if i > j. We get a system of

equations chMλj
=
∑
i
aijchL(λi), where aii = 1, aij = 0 for i > j. So the matrix aij of this system

is upper triangular matrix of integers with 1’s on the diagonal and so its inverse, which expresses
chL(Λ)’s in terms of chM(µ)’s for µ ∈ B(Λ) is a matrix of integers with ones on the diagonal as
well, and we are done.

Proof. Proof of Theorem 3. With Lemma 6, chL(Λ) =
∑

λ∈B(λ)

bλchM(λ), where bΛ = 1. Multiply

both sides by eρR we get from Lemma 3 that

eρRchL(Λ) =
∑

λ∈B(Λ)

bλe
λ+ρ (!)

By Lemma 2 L(Λ) is W -invariant, hence by Lemma 4, eρRchL(Λ) is W -anti-invariant (i.e. multi-
plied by the determinant). Hence the left hand side of the equation is anti-invariant, and therefore
so is the right hand side. Hence using any simple transitivity of W on weyl chambers we can rewrite
(!) as follows:

eρRchL(Λ) =
∑
w∈W

(detw)ew(Λ+ρ) +
∑

λ∈B(Λ)\{Λ},λ+ρ∈P+

bλ
∑
w∈W

(detw)ew(λ+ρ)

So it remains to show that the second term in this sum is 0, i.e. we need to prove that {λ ∈
B(Λ) \ {Λ} s.t. λ + ρ ∈ P+} = ∅. Note that λ ∈ B(Λ) is of the form Λ −

∑
i
kiαi, ki ∈ Z+. Since

B(Λ) ⊂ D(Λ) and also (λ+ ρ, λ+ ρ) = (Λ + ρ,Λ + ρ). Hence

0 = (Λ + ρ,Λ + ρ)− (λ+ ρ, λ+ ρ)
= (Λ− λ, λ+ Λ + 2ρ)

= (
∑
i

kiαi,Λ) + (
∑
i

kiαi, λ) + 2(
∑
i

kiαi, ρ)
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since (Λ, αi) = 2Λ(Hi)
(αi,αi)

≥ 0 and similarly (λ + ρ, αi) ≥ 0, and (ρ, α) = (αi, αi)/2 > 0 This gives a
contradiction so we complete the proof.
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