18.745 Introduction to Lie Algebras	Dec 9, 2010
Lecture 25 — Dimensions and Characters of Semisimple Lie Algebras	
Prof. Victor Kac Sector	cribe: Wenzhe Wei

Let \mathfrak{g} be as in the last lecture - finite dimesional semisimple lie algebra. Let \mathfrak{h} be a Cartan subalgebra, and $\Pi = \{\alpha_1, \ldots, \alpha_r\} \subset \Delta_+ \subset \Delta$, as before, a system of simple roots. We have the triangular decomposition $\mathfrak{g} = \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+, \mathfrak{b} = \mathfrak{h}_+ + \mathfrak{n}_+,$ with \mathfrak{b} - a Borel subalgebra, and $[\mathfrak{b}, \mathfrak{b}] = \mathfrak{n}_+$. Let (\cdot, \cdot) be a nondegenerate invariant symmetric bilinear form on \mathfrak{g} , let $\rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$. Let $\{E_i, H_i, F_i\}$ be the Chevalley generators satisfying $H_i = \frac{2\nu^{-1}(\alpha_i)}{(\alpha_i, \alpha_i)}, E_i \in \mathfrak{g}_\alpha, F_i \in \mathfrak{g}_{-\alpha}$ and such that $\langle E_i, H_i, F_i \rangle$ form the standard basis of $\mathfrak{sl}_2(\mathbb{F})$. Define the subset $P_+ = \{\lambda \in \mathfrak{h}^* | \lambda(H_i) \in \mathbb{Z}_+ \text{ for all } i = 1, \ldots, r\}$

Theorem 25.1. (Cartan) The \mathfrak{g} -modules $\{L(\Lambda)\}_{\Lambda \in P_+}$ are, up to isomorphism, all irreducible finitedimensional \mathfrak{g} -modules. (Recall from previous lectures that $L(\Lambda)$ is the irreducible heigest weight module with heighest weight λ .)

Theorem 25.2. (*H. Weyl Dimension formula*) If $\Lambda \in P_+$, then dim $L(\Lambda) = \prod_{\alpha \in \Delta_+} \frac{(\Lambda + \rho, \alpha)}{(\rho, \alpha)}$

Example 25.1. $\mathfrak{g} = sl_2(\mathbb{F}) = \langle E, F, H \rangle$. Then all Verma modules $M(\Lambda)$, where $\Lambda \in \mathfrak{h}^* = \mathbb{F}$ since $\mathfrak{h}^* = \mathbb{F}H$, have basis $F^J v_{\Lambda,j} \in \mathbb{Z}_+$. By the key sl_2 lemma, $M(\Lambda)$ is irreducible unless $\Lambda = \Lambda(H) \in \mathbb{Z}_+$ In the latter case (by the same lemma) $EF^{\Lambda+1}v_{\Lambda} = 0$, hence $F^{\Lambda+1}v_{\Lambda}$ is a singular vector. So $M(\Lambda)$ is not irreducible. But $L(\Lambda) = M(\Lambda)/\mathcal{U}(sl_2(\mathbb{F})F^{\Lambda+1}v_{\Lambda})$ is irreducible since $F^j v_{\Lambda}$, $0 \leq j \leq m = \Lambda(H)$ are independent. So by fundamental sl_2 lemma, $\dim(L(\Lambda)) = m + 1$

Proof of Theorem 25.1. Recall that $\sigma_i = \langle E_i, F_i, G_i \rangle \simeq sl_2(F)$ and $v_{\Lambda} \in L(\Lambda)$ satisfies $E_i(v_{\Lambda}) = 0, H_i(v_{\Lambda}) = \Lambda(H_i)v_{\Lambda}$. Hence by fundamental sl_2 lemma, $\Lambda(H_i) \in Z_+$. So dim $L(\Lambda) < \infty \Rightarrow \Lambda \in P_+$. Coversely, if $\Lambda \in P_+$, then by Theorem 2, dim $(\Lambda) < \infty$.

Lemma 25.1. Recall $\rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha$. Then $\rho(H_i) = 1$

Proof. Consider the reflection from the Weyl group corresponding to α_i :

$$r_{\alpha_i}\rho = r_{\alpha_i}(\frac{1}{2}\alpha_i + \frac{1}{2}\sum_{\alpha \in \Delta \setminus \{\alpha_i\}} \alpha) = \rho - \alpha_i$$

But $r_{\alpha_i}(\lambda) = \lambda - \lambda(H_i)\alpha_i$ hence $\rho(H_i) = 1$.

Example 25.2. $\mathfrak{g} = \mathfrak{sl}_2$, Then $\Lambda(H) = m$ means that $\Lambda = m\rho$. So

$$\dim L(\Lambda) = \frac{(m+1)(\alpha, \alpha)}{(\alpha, \alpha)} = m + 1$$

Example 25.3. $\mathfrak{g} = \mathfrak{sl}_3$. We have $\Pi = \{\alpha_1, \alpha_2\}, \ (\alpha_i, \alpha_j) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \ \rho = \alpha_1 + \alpha_2, \ \rho(\alpha_i) = 1,$ $\Lambda = m_1\Lambda_1 + m_2\Lambda_2$, where $(\Lambda_i, \alpha_j) = \delta_{ij}$. By Cartan's theorem, $\dim L(\Lambda) < \infty$ iff $m_1, m_2 \in \mathbb{Z}_+$. We compute $(\Lambda + \rho, \alpha_1) = m_1 + 1$, $(\Lambda + \rho, \alpha_2) = m_2 + 1$, and $(\Lambda + \rho, \alpha_1 + \alpha_2) = m_1 + m_2 + 1$, so we have

$$\dim L(\Lambda) = \frac{(m_1+1)(m_2+1)(m_1+m_2+1)}{2}$$

In general, we may write $\Lambda = \Sigma_i k_i \Lambda_i$, where $\Lambda_i(H_j) = \delta_{ij}$. Then dim $L(\Lambda) < \infty$ iff $k_i \in \mathbb{Z}_+$. These $m_1 \quad m_2$

 k_i are called *labels* of the heighest weight. They are depicted on the Dynkin diagram: \bigcirc We'll deduce Weyl's Dimensional formula from the Weyl character formula

Definition 25.1. Let M be a \mathfrak{g} -module which is \mathfrak{h} -diagonalizable, let $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$, then

$$ch(M) = \sum_{\lambda} (\dim M_{\lambda}) e^{\lambda}$$

Here $e^{\lambda}e^{\mu} = e^{\lambda+\mu}, e^0 = 1$

Theorem 25.3. (Weyl Character Formula) Let $R = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})$. if $\Lambda \in P_+$ then

$$e^{\rho}RchL(\Lambda) = \sum_{w \in W} (\det w)e^{w(\Lambda+\rho)} \tag{(*)}$$

We'll first derive Theorem2 from Theorem3, then prove Theorem3.

Given $\mu \in h^*$, consider the following linear map from linear combination of the e^{λ} to functions of t that $F_{\mu}(e^{\lambda}) = e^{t(\lambda,\mu)}$. Apply F_{μ} to both sides of (*), we have

$$e^{t(\rho,\rho)} \prod (1 - e^{-t(\rho,\alpha)}) F_{\rho} chL(\Lambda) = \sum_{w \in W} (\det w) e^{t(w(\Lambda+\rho),w^{-1}(\rho))}$$
$$= \sum_{w \in W} (\det w) e^{t(w(\Lambda+\rho),w(\rho))}$$
$$= F_{\Lambda+\rho} \sum_{w \in W} (\det w) e^{w(\rho)}$$

Now we can value the sum. Note that L(0) is the trivial 1-dim \mathfrak{g} -module, hence chL(0) = 1. Therefore (*) implies

$$e^{\rho}R = \sum_{w \in W} (\det w)e^{w(\rho)} \tag{**}$$

The above equality becomes

$$e^{t(\rho,\rho)}(F_{\rho}ch(L(\Lambda))) = \frac{F_{\Lambda+\rho}e^{\rho}R}{\prod_{\alpha\in\Delta_{+}}(1-e^{-t(\rho,\alpha)})} = \prod_{\alpha\in\Delta_{+}}\frac{(1-e^{-t(\Lambda+\rho,\alpha)})}{(1-e^{-t(\rho,\alpha)})}$$

As $t \to 0, e^{t(\rho,\rho)} \to 1$. hence

$$LHS = F_{\rho}ch(L(\Lambda)) = \sum_{\lambda} \dim L(\Lambda)e^{t(\rho,\Lambda)} = \dim L(\Lambda)$$

And by L'Hospitals rule,

$$\lim_{t \to 0} RHS = \lim_{t \to 0} \prod_{\alpha \in \Delta_+} \frac{(\lambda + \rho, \alpha)}{(\rho, \alpha)} \frac{e^{-t(\lambda + \rho, \alpha)}}{e^{-t(\rho, \alpha)}} = RHS \text{ of Weyl dimension fomula}$$

Proof of the Weyl's character formula.

Lemma 25.2. If $\Lambda(H_i) \in \mathbb{Z}_+$, then $chL(\Lambda)$ is r_i -invariant.

Proof. By the key sl_2 lemma, $E_i F_i^{\Lambda(H_i)+1} v_{\Lambda} = 0$, $E_j F_i^{\Lambda(H_i)+1} v_{\Lambda} = 0$ for $j \neq i$ since E_j and F_i commute. So $F_i^{\Lambda(H_i)+1} v_{\Lambda}$ is a singular vector of $L(\Lambda)$ and since $L(\Lambda)$ is irreducible, so it has no singular weights other than Λ , we conclude that $F_i^{\Lambda(H_i)+1} v_{\Lambda} = 0$.

But $L(\Lambda) = \mathcal{U}(\mathfrak{g})v_{\Lambda}$, hence for $v \in L(\Lambda)$ we conclude that $F_i^N v = 0$ for $N \gg 0$ Also obviously $E_i^N v = 0$ for $N \gg 0$.

It follows that any $v \in L(\Lambda)$ lies in a sl₂-invariant finite dimensional subspace. Hence by Weyl's complete reducibility theorem $L(\Lambda)$ is a direct sum of irreducible sl₂-modules. So it suffices to prove that the character of a finite dimensional irreducible sl₂-modules is r_{α_i} -invariant. Note that

$$chL(m\rho) = e^{m\rho} + e^{(m-2)\rho} + \ldots + e^{-m\rho}$$

Since $r_{\alpha_i}(\rho) = \rho - r_{\alpha_i}$, the character is r_{α_i} -invariant. Hence the lemma holds for $L(\Lambda)$ as well. Lemma 25.3. $RchM(\Lambda) = e^{\Lambda}$

Proof. We know from last lecture that vectors $E_{-\beta_1}^{m_1} \dots E_{-\beta_N}^{m_N}$ form a basis of $M(\Lambda)$. Hence

$$chM(\Lambda) = \sum_{(m_1,\dots,m_N)\in\mathbb{Z}_+^N} e^{\Lambda - m_1\beta_1\dots - m_N\beta_N}$$

$$= e^{\Lambda} \sum_{(m_1,\dots,m_N)\in\mathbb{Z}_+^N} e^{\Lambda - m_1\beta_1\dots - m_N\beta_N}$$

$$= \frac{e^{\Lambda}}{\prod_{\alpha\in\Delta_+} (1 - e^{-\alpha})}$$
(1)

by geometric progression.

Lemma 25.4. $w(e^{\rho}R) = (\det w)e^{\rho}R$ for any $w \in W$

Proof. Since W is generated by r_{α_i} , it suffices to check $r_{\alpha_i}(e^{\rho_i}R) = -e^{\rho_i}R$. Indeed, we can rewrite R as

$$R = (1 - e^{\alpha_i}) \prod_{\alpha \in \Delta_+ \setminus \alpha_i} (1 - e^{-\alpha})$$

Note that $\prod_{\alpha \in \Delta_+ \setminus \alpha_i} (1 - e^{-\alpha})$ is r_{α_i} -invariant, so by Lemma 1

$$r_{\alpha_{i}}(e^{\rho}R) = e^{\rho-\alpha_{i}}(1-e^{\alpha_{i}}) \prod_{\alpha \in \Delta_{+} \setminus \alpha_{i}} (1-e^{-\alpha})$$
$$= e^{\rho}(e^{-\alpha_{i}}-1) \prod_{\alpha \in \Delta_{+} \setminus \alpha_{i}} (1-e^{-\alpha})$$
$$= -e^{\rho}R$$
(2)

as wanted.

Lemma 25.5. Let $\Lambda \in \mathfrak{h}_{\mathbb{R}}^*$ and let V be a highest weight module with highest weight Λ . Let $D(\Lambda) = \{\Lambda - \Sigma k_i \alpha_i, k_i \in \mathbb{Z}_+\}$. Then $chV = \Sigma_{\lambda \in B(\Lambda)} a_\lambda chL(\lambda)$, where $B(\Lambda) = \{\lambda \in D(\Lambda) | (\Lambda + \rho, \Lambda + \rho) = (\lambda + \rho, \lambda + \rho) \text{ and } a_\Lambda = 1, a_\lambda \in \mathbb{Z}_+\}$.

Proof. Proof is by induction on dim $V = \sum_{\lambda \in B(\Lambda)} \dim V_{\lambda} < \infty$ due to Theorem2(h) from last lecture that $|B(\Lambda)| < \infty$ is finite. If $\sum_{\lambda \in B(\Lambda)} = 1$ then Λ is the only singular weight hence by Theorem2(c) from last lecture that $V = L(\Lambda)$ so $chV = chL(\Lambda)$. If there another singular vector $v_{\lambda}, \lambda \neq \Lambda$, let $U = \mathcal{U}(\mathfrak{g})v_{\lambda}$ and consider the following exact sequence of \mathfrak{g} -modules

$$0 \to U \to V \to V/U \to 0$$

Then ch(V) = ch(U) + ch(U/V), now we apply the induction assumption to each of the terms. \Box

Lemma 25.6. In the assumptions of Lemma 5 and $V = L(\Lambda)$ is irreducible, we have $chV = \sum_{\lambda \in B(\lambda)} b_{\lambda} chM_{\lambda}$, where $b_{\Lambda} = 1$ and $b_{\lambda} \in Z$.

Proof. By Lemma 5 we have for any $\mu \in B(\Lambda)$: $chM(\mu) = \sum_{\lambda \in B(\mu)} a_{\lambda,\mu}chL(\lambda)$. Let $B(\Lambda) = \{\Lambda = \lambda_1, \ldots, \lambda_r\}$. Order them in such a way that $\lambda_i - \lambda_j \notin \{\sum_i k_i \alpha_i | k_i \in \mathbb{Z}_+\}$ if i > j. We get a system of equations $chM_{\lambda_j} = \sum_i a_{ij}chL(\lambda_i)$, where $a_{ii} = 1, a_{ij} = 0$ for i > j. So the matrix a_{ij} of this system is upper triangular matrix of integers with 1's on the diagonal and so its inverse, which expresses $chL(\Lambda)$'s in terms of $chM(\mu)$'s for $\mu \in B(\Lambda)$ is a matrix of integers with ones on the diagonal as well, and we are done.

Proof. Proof of Theorem 3. With Lemma 6, $chL(\Lambda) = \sum_{\lambda \in B(\lambda)} b_{\lambda} chM(\lambda)$, where $b_{\Lambda} = 1$. Multiply both sides by $e^{\rho}R$ we get from Lemma 3 that

$$e^{\rho}RchL(\Lambda) = \sum_{\lambda \in B(\Lambda)} b_{\lambda}e^{\lambda + \rho}$$
(!)

By Lemma 2 $L(\Lambda)$ is W-invariant, hence by Lemma 4, $e^{\rho}RchL(\Lambda)$ is W-anti-invariant (i.e. multiplied by the determinant). Hence the left hand side of the equation is anti-invariant, and therefore so is the right hand side. Hence using any simple transitivity of W on weyl chambers we can rewrite (!) as follows:

$$e^{\rho}RchL(\Lambda) = \sum_{w \in W} (\det w)e^{w(\Lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)}e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} b_{\lambda} \sum_{w \in W} (\det w)e^{w(\lambda+\rho)} + \sum_{w \in$$

So it remains to show that the second term in this sum is 0, i.e. we need to prove that $\{\lambda \in B(\Lambda) \setminus \{\Lambda\} \text{ s.t. } \lambda + \rho \in P_+\} = \emptyset$. Note that $\lambda \in B(\Lambda)$ is of the form $\Lambda - \sum_i k_i \alpha_i, k_i \in Z_+$. Since $B(\Lambda) \subset D(\Lambda)$ and also $(\lambda + \rho, \lambda + \rho) = (\Lambda + \rho, \Lambda + \rho)$. Hence

$$0 = (\Lambda + \rho, \Lambda + \rho) - (\lambda + \rho, \lambda + \rho)$$

= $(\Lambda - \lambda, \lambda + \Lambda + 2\rho)$
= $(\sum_{i} k_{i}\alpha_{i}, \Lambda) + (\sum_{i} k_{i}\alpha_{i}, \lambda) + 2(\sum_{i} k_{i}\alpha_{i}, \rho)$

since $(\Lambda, \alpha_i) = \frac{2\Lambda(H_i)}{(\alpha_i, \alpha_i)} \ge 0$ and similarly $(\lambda + \rho, \alpha_i) \ge 0$, and $(\rho, \alpha) = (\alpha_i, \alpha_i)/2 > 0$ This gives a contradiction so we complete the proof.