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Lecture 25 —Dimensions and Characters of Semisimple Lie Algebras
Prof. Victor Kac Scribe: Wenzhe Wei

Let g be as in the last lecture - finite dimesional semisimple lie algebra. Let ) be a Cartan subalgebra,
and IT = {ay,...,a.} C Ay C A, as before, a system of simple roots. We have the triangular
decomposition g =n_+h+n4, b = hy +ny, with b - a Borel subalgebra, and [b,b] = n;. Let (-, )

be a nondegenerate invariant symmetric bilinear form on g, let p = %Eae Ao Let {E;, H;, Fi} be
the Chevalley generators satisfying H; = 21(';5‘)1), FE; € go, F; € g—o and such that < E;, H;, F; >

form the standard basis of sly(F). Define the subset P, = {\ € h*|\(H;) € Z4 foralli =1,...7}

Theorem 25.1. (Cartan) The g-modules {L(A)}acp, are, up to isomorphism, all irreducible finite-
dimensional g-modules. (Recall from previous lectures that L(A) is the irreducible heigest weight
module with heighest weight X.)

Theorem 25.2. (H.Weyl Dimension formula) If A € Py, then dimL(A) = ] %
aEA L ’

Example 25.1. g = slo(F) =< E,F,H >. Then all Verma modules M (A), where A € h* = F
since h* = FH, have basis F/vy,j € Z,. By the key sly lemma, M(A) is irreducible unless
A = A(H) € Z, In the latter case (by the same lemma) EFA*1ly,y = 0, hence FA*1y, is a singular
vector. So M(A) is not irreducible. But L(A) = M (A)/U(slo(F)FM 1oy is irreducible since Fiuy,
0 <j <m = A(H) are independent. So by fundamental sly lemma, dim(L(A)) =m + 1

Proof of Theorem 25.1. Recall that o; =< E;, F;, G; >~ sla(F) and vy € L(A) satisfies E;(vy) =
0, H;(va) = A(H;)vp. Hence by fundamental sly lemma, A(H;) € Z4. SodimL(A) < co = A € Py.
Coversely, if A € Py, then by Theorem 2, dim(A) < oo.

O

Lemma 25.1. Recallp=3 > «a. Then p(H;) =1

CMEAJr
Proof. Consider the reflection from the Weyl group corresponding to «;:

1 1
Taipzrai(iai—i-i Z a):p—ai
acA\{a;}

But 74, (A) = A — A(H;)a; hence p(H;) = 1. O

Example 25.2. g = slp, Then A(H) = m means that A = mp. So

dimL(A) = W —m+1

Example 25.3. g = sl3. We have II = {a1, a2}, (4, 05) = < _21 _21 >, p=a+a, pla;) =1,

A = miAy +maAg, where (A;, o) = ;5. By Cartan’s theorem, dimL(A) < oo iff my, mo € Z, . We



compute (A + p,a1) =my1 + 1, (A+ p,a2) =ma + 1, and (A + p,a1 + ag) = m1 +ma + 1, so we

have
(m1 4 1)(ma + 1)(m1 +ma + 1)

dimL(A) = 5

In general, we may write A = ¥;k;A;, where A;(H;) = d;5. Then dimL(A) < oo iff k; € Z4.. These

mq mo
k; are called labels of the heighest weight. They are depicted on the Dynkin diagram:
We’ll deduce Weyl’s Dimensional formula from the Weyl character formula

Definition 25.1. Let M be a g-module which is h-diagonalizable, let M = @ M), then
Ach*
ch(M) = Z(dimMA)e)‘

A
Here etet = eMH 0 =1
Theorem 25.3. (Weyl Character Formula) Let R= T[] (1—e ). if A € P, then

aEA L
e’?RchL(A) = Z (detw)eA+r) (%)
weW

We'll first derive Theorem?2 from Theorem3, then prove Theorem3.
Given p € h*, consider the following linear map from linear comibnation of the e* to functions of
t that F,(e}) = e!™*) Apply F, to both sides of (*), we have

et(Pp) H(l _ e*t(p’a))chhL(A) — Z (detw)et(w(/\+p)7w‘1(p))
weWw
— Z(detw)et(w(A+P)’w(P))
weW

= Faip Z (detw)e®(®)
weW

Now we can value the sum.Note that L(0) is the trivial 1-dim g-module, hence chL(0) = 1. There-
fore (*) implies

e’R = Z (detw)e®(®) (xx)
weW
The above equality becomes
FripePR (1 — e~ tApa))
t(p,p) — Atp =
€ (FPCh(L(A))) H (1 - e_t(ﬁva)> H (1 - e—t(ﬁva))
a€A+ aceAL

Ast — 0, et»P) — 1. hence

LHS = Fpch(L(A)) =) dimL(A)e"®™) = dimL(A)
A

And by L’Hospitals rule,

—t(Ap,a)
lim RS = lim At+pa)e

— —t B
t anA+ (p, ) e—t(p:a)

= RHS of Weyl dimension fomula



Proof of the Weyl’s character formula. O

Lemma 25.2. If A(H;) € Z4, then chL(A) is r;-invariant.

Proof. By the key sly lemma, EiFiA(Hi)HvA =0, EjFiA(Hi)HvA = 0 for j # ¢ since E; and F;

(HIH)\ s a singular vector of L(A) and since L(A) is irreducible, so it has no

(Hi)—i—lUA =0.

A
commute. So F;

singular weights other than A, we conclude that FZA

But L(A) = U(g)va, hence for v € L(A) we conclude that FNv = 0 for N > 0 Also obviously
ENv =0 for N > 0.

It follows that any v € L(A) lies in a slp-invariant finite dimensional subspace. Hence by Weyl’s
complete reducibility theorem L(A) is a direct sum of irreducible sle-modules. So it suffices to prove
that the character of a finite dimensional irreducible sl-modules is 7,,-invariant. Note that

chL(mp) = ™ + eMm=2P 4 e
Since rq,(p) = p — ra,, the character is rq,-invariant. Hence the lemma holds for L(A) as well. O

Lemma 25.3. RchM(A) = e

Proof. We know from last lecture that vectors E™3 ... E’_”éVN form a basis of M (A). Hence

chM(A) = Z eA—mi1Bi..—myBN
(ml,...mN)EZﬁ

— A Z eA—mifi..—myBN

N
(m1,..mn)ELY

el

[[ (1—e)

aEA L

by geometric progression. ]

Lemma 25.4. w(e?R) = (detw)e?R for any w € W

Proof. Since W is generated by r,,, it suffices to check 74,(e’R) = —e”R. Indeed, we can rewrite
R as
R=(1-¢%) [[ -
QEA+\O£¢
Note that [ (1 —e™%) is rq,-invariant, so by Lemma 1
OéGA.;,_\OzZ'
ra(€R) = eros(i—en) [ (1-e)
OzGA+\O(i
= efle7™ —=1) H (1—e%)
CMEA+\O(7;

= —e’R (2)

as wanted. O



Lemma 25.5. Let A € by and let V be a highest weight module with highest weight A. Let
D(A) = {A — Bkii, ki € Zy}. Then chV = Yyepnyax chL(X), where B(A) = {\ € D(A)|(A +
p,A+p)=A+p,A+p) and ap =1,a) € Z}.

Proof. Proof is by induction on dimV = )  dimV) < co due to Theorem2(h) from last lecture
AEB(A)
that |[B(A)| < oo is finite. If > =1 then A is the only singular weight hence by Theorem2(c)
AEB(A)
from last lecture that V' = L(A) so chV = chL(A). If there another singular vector vy, A # A, let
U = U(g)vy and consider the following exact sequence of g-modules

0—-U—-V->V/U—=0
Then ch(V') = ch(U) 4 ch(U/V'), now we apply the induction assumption to each of the terms. [

Lemma 25.6. In the assumptions of Lemma 5 and V. = L(A) is irreducible, we have chV =
ZAeB(A)b)\chMA, where by =1 and by € Z.

Proof. By Lemma 5 we have for any p € B(A): chM(pu) = Y axuchL()\). Let B(A) = {A =
AEB(p)
A1, ..., Ar}. Order them in such a way that \j —\; & {>° ki |k; € Z4 } if i > j. We get a system of

equations chM), = a;ichL()\;), where a;; = 1,a;; = 0 for i > j. So the matrix a;; of this system

7
is upper triangular matrix of integers with 1’s on the diagonal and so its inverse, which expresses
chL(A)’s in terms of chM (u)’s for p € B(A) is a matrix of integers with ones on the diagonal as
well, and we are done. ]

Proof. Proof of Theorem 3. With Lemma 6, chL(A) = ). byxchM()), where by = 1. Multiply
AEB(N)
both sides by e’ R we get from Lemma 3 that

e’RehL(A) = Y bre*? (1)
AeB(A)

By Lemma 2 L(A) is W-invariant, hence by Lemma 4, e’ RehL(A) is W-anti-invariant (i.e. multi-
plied by the determinant). Hence the left hand side of the equation is anti-invariant, and therefore
so is the right hand side. Hence using any simple transitivity of W on weyl chambers we can rewrite
(1) as follows:

e’RchL(A) = Z (detw)e?A+P) 4 Z by Z (detw)e*+0)
weW XeB(A)\{A} M\ pePy  weW

So it remains to show that the second term in this sum is 0, i.e. we need to prove that {\ €
B(A)\ {A} st. X+ p e P} =@. Note that A € B(A) is of the form A — ) kjay, k; € Z4. Since
i

B(A) € D(A) and also (A + p, A+ p) = (A + p, A + p). Hence

0 = (A+p,A+p)—A+p,A+p)
= (A=MA+A+2p)

4



since (A, ;) = 2AUH) > ) and similarly A+ p,a) > 0, and (p, ) = (i, ;)/2 > 0 This gives a

(aiyaq)
contradiction so we complete the proof. O



