18.745 Introduction to Lie Algebras

December 7, 2010

Lecture 24 — Finite dimensional g-modules over a s.s. Lie algebra.

Prof. Victor Kac

Scribe: Mario De Franco, Roberto Svaldi

1 Finite dimensional representations of semisimple Lie algebras

Let \mathfrak{g} be a finite dimensional semisimpe Lie algebra, over an algebraically closed field \mathbb{F} of characteristic 0. Choose a Cartan subalgebras $\mathfrak{h} \subset \mathfrak{g}$ and a subset of positive roots $\Delta_+ \subset \mathfrak{h}^*$. Let

$$\mathfrak{g}=\mathfrak{N}_-\oplus\mathfrak{h}\oplus\mathfrak{N}_+$$

be the triangular decomposition. Recall that \mathfrak{N}_+ (resp. \mathfrak{N}_-) is generated by the vectors E_1, \ldots, E_r (resp. F_1, \ldots, F_r) or, equivalenty, that $\mathfrak{N}_{\pm} = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_{\pm \alpha}$. Let us define

$$\mathfrak{b}\doteqdot\mathfrak{h}\oplus\mathfrak{N}_{+}.$$

b is called a Borel subalgebra. Note that

$$[\mathfrak{b},\mathfrak{b}] = \mathfrak{N}_{+}.\tag{1}$$

Indeed, $[\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{N}_+$, follows immediately by the definition of \mathfrak{b} , while $[\mathfrak{b}, \mathfrak{b}] \supset \mathfrak{N}_+$ follows from the fact that $[h, \mathfrak{g}_{\alpha}] \neq 0$, if $\alpha(h) \neq 0$ and such h always exists, since $\alpha \neq 0$. As \mathfrak{N}_+ is a nilpotent subalgebra, we see that \mathfrak{b} is a solvable subalgebra. Moreover, \mathfrak{b} is a maximal solvable subalgebra (and all such subalgebras are conjugated).

Since by Weyl's complete reducibility theorem, every finite dimensional \mathfrak{g} -module is a direct sum of irreducible ones, it suffices to study finite dimensional, irreducible \mathfrak{g} -modules.

Proposition 1.1. Let V be a finite dimensional, irreducile \mathfrak{g} -module. Then $\exists \Lambda \in \mathfrak{h}^*$ and $0 \neq v_{\Lambda} \in V$ s.t. the following three properties hold:

- i) $hv_{\Lambda} = \Lambda(h)v_{\Lambda}, \forall h \in \mathfrak{h}^*$;
- $ii) \mathfrak{N}_+ v_{\Lambda} = 0;$
- $iii) \ \mathfrak{U}(\mathfrak{g})v_{\Lambda} = V.$

It follows immediately that property iii) is equivalent to the following property

$$iii)' \mathfrak{U}(\mathfrak{N}_{-})$$

Proof. By Lie's Theorem, \mathfrak{b} has an eigenvector $0 \neq v \in V$ so that $\forall b \in \mathfrak{b}$, $\tilde{\Lambda}(b)v$, for some $\tilde{\Lambda} \in \mathfrak{h}^*$. But, by the property illustrated in (1), we see that $\tilde{\Lambda}(\mathfrak{N}_+) = 0$, since $\tilde{\Lambda}([b_1, b_2]) = \Lambda(b_1)\Lambda(b_2) - \Lambda(b_2)\Lambda(b_1)$. Let $\Lambda = \tilde{\Lambda}_{|\mathfrak{h}} \in \mathfrak{h}^*$, then i) and ii) hold and iii) follows from the irreducibility of the \mathfrak{g} -module V, since $\mathfrak{U}(g)v_{\lambda}$ (we are identifying $v_{\Lambda} = v$) is a non-zero submodule of V (it contains v_{Λ} since $Id \in \mathfrak{U}(\mathfrak{g})$).

Definition 1.1. A g-module V (not necessarily finite dimensional) with the property that $\exists \Lambda \in \mathfrak{h}^*$ and $0 \neq v_{\Lambda} \in V$ such that properties i), ii), iii) from the previous proposition hold, is called highest weight module with heighest weight Λ and v_{λ} is called a heighest weight vector.

Let $\Delta_+ = \{\beta_1, \dots, \beta_r\}$ be the set of positive roots for \mathfrak{g} . Choose root vectors $E_{\beta_i} \in \mathfrak{N}_+$, $E_{-\beta_i} \in \mathfrak{N}_-$ and let h_1, \dots, H_n be a nasis for \mathfrak{h} , then vectors $E_{\beta_i}, E_{-\beta_i}$ $(i = 1, \dots, N), h_j$ $(j = 1, \dots, n)$ form a basis for \mathfrak{g} . By PBW theorem, monomials of the form

$$E_{-\beta_1}^{m_1} \dots E_{-\beta_N}^{m_N} H_1^{s_1} \dots H_r^{s_r} E_{\beta_1}^{n_1} \dots E_{\beta_N}^{n_N}, \ m_i, n_j, s_k \in \mathbb{Z}_+.$$

In particular

Definition 1.2. For an arbitrary \mathfrak{g} -module V, let h be an element of \mathfrak{h}^* , we denote $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v, \ \forall h \in \mathfrak{h}\}$ the weight space for \mathfrak{h} attached to λ . A non-zero vector $v \in V_{\lambda}$ is called singular of weight λ if $\mathfrak{N}_+v = 0$.

Example 1.1. Any $\Lambda \in \mathfrak{h}^*$ is a singular weight of a highest weight \mathfrak{g} -module with highest weight Λ .

Notation 1.1. Given $\Lambda \in \mathfrak{h}^*$, let $D(\Lambda) = \{\Lambda - \sum_{i=1}^r k_i \alpha_i : k_i \in \mathbb{Z}_+\} \subset \mathfrak{h}^*$, where $\Pi = \{\alpha_1, \alpha_2, \dots \alpha_r\}$ is the set of simple roots of \mathfrak{g} .

Theorem 1.2. Let V be a highest weight \mathfrak{g} -module with highest weight $\Lambda \in \mathfrak{h}^*$. Then,

- (a) $V = \bigoplus_{\lambda \in D(\Lambda)} V_{\lambda}$
- (b) $V_{\Lambda} = \mathbb{F}v_{\Lambda}$ and dim $V_{\lambda} < \infty$
- (c) V is an irreducible \mathfrak{g} -module if and only if \mathbb{F}^*v_{Λ} are the only singular vectors.
- (d) V contains a unique proper maximal submodule.
- (e) If v is a singular vector with weight λ , then $\Omega(v) = (\lambda + 2\rho, \lambda)v$. Here (\cdot, \cdot) is a non-degenerate symmetric invariant bilinear form on \mathfrak{g} and Ω is the corresponding Casimir operator, and $2\rho = \sum_{\alpha \in \Delta_+} \alpha$.
- (f) $\Omega|_V = (\Lambda + 2\rho, \Lambda)Id_V$
- (q) If λ is a singular weight, then $(\lambda + \rho, \lambda + \rho) = (\Lambda + \rho, \Lambda + \rho)$.

Proof: Pf a, b)

By iii),
$$V = U(\mathfrak{n}_{-})v_{\Lambda} = \sum \mathbb{F}E^{m_1}_{-\beta_1}...E^{m_N}_{-\beta_N}v_{\Lambda} \in V_{\Lambda} - \sum_{1}^{N} m_i\beta_i \in D(\Lambda)$$
, proving a) and b). Pf c)

We know

$$(*) U = \bigoplus_{\lambda \in D(\Lambda)} (U \cap V_{\lambda})$$

for a submodule U by a previous lecture. So choose $\lambda \in D(\Lambda)$ to be of minimal height with $U \cap V_{\lambda} \neq 0$. Then $E_{\alpha}v = 0$ for any $v \in U \cap V_{\lambda}$, so v is a singular vector. And if v is a singular vector of weight λ , then $U(\mathfrak{g})v = U(\mathfrak{n}_{-})v$ which is a proper submodule of V unless $\lambda = \Lambda$.

Pfd)

The sum of proper submodules of V is again a proper submodule because it does not contain v_{Λ} . Thus this sum is a unique maximal submodule.

Pf e)

Take a a basis $\{E_{\beta_i}, E_{-\beta_i}, H_i\}$ and its dual $\{E_{-\beta_i}, E_{\beta_i}, H^i\}$ and compute Casimir operator $\Omega = \sum_{1}^{r} H_i H^i + \sum_{1}^{N} E_{\beta_i} E_{-\beta_i} + E_{-\beta_i} E_{\beta_i} = \sum_{1}^{r} H_i H^i + 2 \sum_{1}^{N} E_{-\beta_i} E_{\beta_i} + 2\nu^{-1}\alpha$. Apply this to a singular vector v_{λ} to get

$$\Omega v_{\lambda} = \sum_{1}^{r} \lambda(H_i) \lambda(H^i) v_{\lambda} + \sum_{1}^{N} (\lambda, \beta_i) v_{\lambda} + 0$$

The right hand side is $(\lambda, \lambda) + 2(\lambda, \rho)$.

Pf f)

 $\Omega v_{\Lambda} = (\Lambda + 2\rho, \Lambda)v_{\Lambda}$ by e) and since Ω commutes with $U(\mathfrak{g})$ we get $\Omega(E_{-\beta_1}^{m_1}...E_{-\beta_N}v_{\Lambda}v_{\lambda}) = (\Lambda + 2\rho, \Lambda)E_{-\beta_1}^{m_1}...E_{-\beta_N}v_{\Lambda}$

Pf g)

follows from f) and e).

Pf h)

If λ is singular weight, then $(\lambda + 2\rho, \lambda) = (\Lambda + 2\rho, \Lambda)$ by g). This describes a compact set in which the singular weights must lie. But $\lambda \in D(\Lambda)$, a discrete set. As the intersection of a discrete set and compact set is finite, we have that the singular weights must be finite in number.

A Verma module $M(\Lambda)$ is highest weight module with highest weight Λ such that any other module with highest weight Λ is quotient of $M(\Lambda)$. We construct $M(\Lambda)$ as $U(\mathfrak{g})/U(\mathfrak{g})(\mathfrak{n}_+;h-\Lambda(h),h\in\mathfrak{h})$

By Theorem 1 d), $M(\Lambda)$ has unique maximum submodule $J(\Lambda)$ such that $L(\Lambda) = M(\Lambda)/J(\Lambda)$ is unique highest weight module with highest weight Λ .

Theorem 1.3. (a) For any $\Lambda \in \mathfrak{h}*$, there exists a Verma module $M(\Lambda)$, unique up to isomorphism.

- (b) $M(\Lambda)$ has unique irreducible quotient $L(\Lambda)$
- (c) $M(\Lambda) = M(\Lambda')$ (resp. $L(\Lambda) = L(\Lambda')$) iff $\Lambda = \Lambda'$
- (d) $E_{-\beta_1}^{m_1}...E_{-\beta_N}^{m_N}v_{\lambda}$ form basis of $M(\Lambda)$.

Proof: a), b), c) are clear. d) follows from the PBW theorem because $E_{-\beta_1}^{m_1}...E_{-\beta_N}^{m_N}$ never lies in $J(\Lambda)$.