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Lecture 21 — The Weyl Group of a Root System
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Let V be a finite dimensional Euclidean vector space, i.e. a real vector space with a positive definite
symmetric bilinear form (. , .). Let a ∈ V be a nonzero vector and denote by ra the orthogonal
reflection relative to a, i.e. ra(a) = −a, ra(v) = v if (a, v) = 0.

Formula 21.1. ra(v) = v − 2(a,v)
(a,a) a.

Exercise 21.1. Prove: (a) ra ∈ Ov(R), i.e. (rau, rav) = (u, v), u, v ∈ V . (b) ra = r−a and r2
a = 1.

(c) detra = −1. (d) If A ∈ Ov(R), then AraA
−1 = rA(a).

Proof. For (a), (rau, rav) = (u− 2(a,u)
(a,a) a, v−

2(a,v)
(a,a) a) = (u, v)− 2(a,u)(a,v)

(a,a) − 2(a,v)(a,u)
(a,a) +4 (a,u)(a,v)(a,a)

(a,a)2
=

(u, v).

For (b), since ra(a) = −a, we have r−a(−a) = a. Also, for any v perpendicular to a, it is also
perpendicular to −a, thus r−a(v) = v. Thus ra acts the same way as r−a on the entire space, so
ra = r−a. Next, r2

a(a) = ra(−a) = a. Also, for v perpendicular to a, r2
a(v) = ra(v) = v. Thus, r2

a

acts the same way as 1 does, so r2
a = 1.

For (c), ra fixes the space (of dimension dimV-1) perpendicular to a, thus it has 1 as an eigenvalue
of multiplicity dimV − 1. The other eigenvalue is −1, corresponding to eigenvector a. Thus detra
equals product of all eigenvalues, which is −1.

For (d), notice that AraA
−1(A(a)) = Ara(a) = A(−a) = −A(a). Also, for any v perpendicular to

A(a), (A−1(v), a) = (v,A(a)) = 0 as A ∈ O. Thus AraA
−1(v) = A(A−1(v)) = v. Thus AraA

−1

acts the same way as rA(a), so they are equal.

Definition 21.1. Let (V,∆) be a root system. Let W be the subgroup of Ov(R), generated by
all rα, where α ∈ ∆. The group W is called the Weyl group of the root system (V,∆) (and of the
corresponding semisimple lie algebra g).

Proposition 21.1. (a) w(∆) = ∆ for all w ∈W . (b) W is a finite subgroup of the group Ov(R).

Proof. For (a), it suffice to show that rα(β)(= β− 2(α,β)
(α,α) α) ∈ ∆ if α, β ∈ ∆. First, rα is nonsingular

as it has determinant −1. Recall the string property of (V,∆): {β − kα|k ∈ Z} ∩ (∆ ∪ 0) =

{β− pα, ..., β+ qα}, where p, q ∈ Z+, p− q = 2(α,β)
(α,α) . Hence p ≥ 2(α,β)

(α,α) , q ≥ −
2(α,β)
(α,α) . So if (α, β) ≤ 0,

by the string property, we can add α to β at least −2(α,β)
(α,α) times and if (α, β) ≥ 0 we can subtract

α from β at least 2(α,β)
(α,α) times, which exactly means that β − 2(α,β)

(α,α) α ∈ ∆ ∪ {0}. But it can’t be 0
since rα is nonsingular.

(b) is clear since ∆ spans V , so if w ∈W fixes all elements of ∆, it must be 1, so W embeds in the
group of permutations of the finite set ∆ by (a). Therefore W is finite.

Remark 21.1. (a) shows the string property of the root system implies that ∆ is W -invariant. One

can show converse is true: if we replace string property by W -invariance of ∆ and that 2(α,β)
(α,α) ∈ Z,
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then we get an equivalent definition of a root system. One has to check only for the case dimV = 2.
(see Serre)

Fix f ∈ V ∗ which doesn’t vanish on ∆, let ∆+ = {α ∈ ∆|f(α) > 0} be the subset of positive roots
and let Π = {α1, ..., αr} ∈ ∆+ be the set of simple roots (r = dimV ). Then the reflections si = rαi

are called simple reflections.

Theorem 21.2. (a) ∆+\{αi} is si-invariant. (b) if α ∈ ∆+\Π, then there exists i such that
htsi(α) < htα (ht

∑
i kiαi =

∑
i ki). (c) If α ∈ ∆+\Π, then there exists a sequence of simple

reflections si1 , ...sik such that si1 , ...sik(α) ∈ Π and also sij , ...sik(α) ∈ ∆+ for all 1 ≤ j ≤ k. (d)
The group W is generated by simple reflections.

Proof. (a) For a positive root α, si(α) = α − nαi, where n is an integer. If α 6= αi, then all
coefficients in the decomposition of simple root remain positive, except possibly for the coefficient
of αi. But in a positive root α, all coefficients are nonnegative. Hence if α is not simple, it must
have positive coefficient in front of some simple roots other than αi (other positive integer multiples
of αi are not in ∆ by definition of root system), thus si(α) should remain positive.

(b) si(α) = α − 2(α,αi)
(αi,αi)

αi. Now if htsi(α) ≥ htα for all i, then (α, αi) ≤ 0 for all i. But then

(α, α) =
∑

i ai(α, αi) ≤ 0. Since α =
∑

i aiαi, ai ≥ 0. So α = 0, a contradiction.

(c) Just apply (b) finitely many times until we get a simple root.

(d) Denote by W ′ the subgroup of W , generated by simple reflections. By (c), for any α ∈ ∆+

there exists w ∈ W ′, such that w(α) = αj ∈ Π. Hence by Ex.21.1(d), rα = w−1sjw, which lies in
W ′. So W ′ contains all reflections rα with α ∈ ∆. But r−α = rα, so W ′ contains all reflections,
hence W ′ = W .

Example 21.1. ∆Ar = {εi − εj |1 ≤ i, j ≤ r + 1, i 6= j} ⊂ V = {
∑r+1

i=1 aiεi|
∑

i ai = 0, ai ∈ R} ⊂
Rr+1 = ⊕r+1

i=1Rεi, with (εi, εj) = δi,j .

We have rεi−εj (εs) = εs − 2(εs,εi−εj)
2 (εi − εj) =


εs if s 6= i, s 6= j
εj if s = i
εi if s = j

So rεi−εj is transposition of

εi, εj , so WAr = Sr+1.

Exercise 21.2. Compute Weyl Group for root systems of type Br, Cr, Dr. In particular show that
for Br and Cr they are isomorphic, but not isomorphic to Dr.

Proof. ∆Br = {±εi ± εj |1 ≤ i, j ≤ r, i 6= j} ∪ {±εi} ⊂ Rr = ⊕ri=1Rεi, with (εi, εj) = δi,j . It is easy
to see that, as in the example, rεi−εj switches εi with εj , rεi switches the sign of εi and the other rα
are generated by the previous two. Thus the Weyl Group consisting of all elements that permute r
elements as well as switch some of their signs. So it is the semidirect product group Zr2 o Sr. The
root system for Cr is just that for Br with ±εi replaced by ±2εi. So of course the reflections are
exactly the same, so Weyl Groups for Br and Cr are the same.

∆Dr = {±εi ± εj |1 ≤ i, j ≤ r, i 6= j} ⊂ Rr = ⊕ri=1Rεi, with (εi, εj) = δi,j . Now rεi−εj acts as before,
and rεi+εj switches εi to −εj and εj to −εi. Thus Weyl Group is the group of all elements that

permute r elements as well as switching an even number of their signs. Thus it is Zr−1
2 o Sr, and

it is not isomorphic to that of Br and Cr.
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Definition 21.2. Consider the open (in usual topology) set V −∪α∈∆Tα in V (Tα is the hyperplane
perpendicular to α). The connected components of the set are called open chambers, the closures
are called closed chambers. C = {v ∈ V |(αi, v) > 0, αi ∈ Π} is called the fundemental chamber;
C = {v|(αi, v) ≥ 0, αi ∈ Π} is called closed fundemental chamber.

Exercise 21.3. Show that the open fundemental chamber is a chamber.

Proof. We first show that C is connected. Given any u, v ∈ C, we have (αi, u) > 0 for all αi ∈ Π.
Now given any α ∈ ∆+, α is a linear comobination of αi with positive coefficients. Thus (α, u) > 0.
Similarly, (α, v) > 0. Now any point on the straight segment connecting u and v has the form
xu+ (1− x)v for some 0 ≤ x ≤ 1. Thus it is easy to see that (α, x) > 0. Thus u, v are in a single
component, i.e. an open chamber (we only considered α being a positive root. But if it is negative,
we get similarly that (α, u), (α, v) and (α, x) are all negative).

Now, take any element u′ not in C, then by definition (αi, u
′) ≤ 0 for some αi ∈ Π. Then obviously

u′ and u ∈ C are not in the same component as they are separated by the hyperplane Tαi . Thus C
is an entire component, i.e. an open chamber.

Theorem 21.3. (a) W permutes all chambers transitively, i.e. for any two chambers Ci and
Cj there exists w ∈ W such that w(Ci) = Cj. (b) Let ∆+ and ∆′+ be two subsets of positive
roots, defined by linear functions f and f ′. Then there exists w ∈ W such that w(∆+) = ∆′+. In
particular, the Cartan matrix of (V,∆) is independent of the choice of f .

Proof. (a) Choose a segment connecting points in Ci, Cj , which doesn’t intersect ∪α,β∈∆(Tα ∩ Tβ).
Let’s move along the segment until we hit a hyperplane Tα. Then replace Ci by rαCi. After finitely
many steps we hit the chamber Cj .

(b) a linear function f on V can be written as fa, where fa(v) = (a, v) for fixed a ∈ V . f doesn’t
vanish on ∆ means that a /∈ ∪α∈∆Tα, so f = fa with a in some open chamber. If we move a around
this chamber, the set ∆+, defined by f remains unchanged. Hence all the subsets of positive roots
in ∆ are labelled by open chamber and if w(C) = C ′, then for the corresponding sets of positive
roots ∆+ and ∆′+ we get that w(∆+) = ∆′+.

Definition 21.3. Let s1, ...sr be the simple reflections in W (they depend on choice of ∆+). Any
w ∈W can be written as a product w = si1 ...sit due to Theorem 21.2(d). Such a decomposition with
minimal possible number of factors t is called a reduced decomposition and in this case t = l(w) is
called the length of w. Note: detw = (−1)l(w) since detsi = −1. E.g. l(1) = 0, l(si) = 1, l(si, sj) = 2
if i 6= j, but = 0 if i = j since s2

i = 1.

Lemma 21.4. (Exchange Lemma) Suppose that si1 ...sit−1(αit) ∈ ∆−, αit ∈ Π. Then the expression
w = si1 ...sit is not reduced. More precisely, w = si1 ...sim−1sim+1 ...sit−1 for some 1 ≤ m ≤ t− 1.

Proof. Consider the roots βk = sik+1
...sit−1(αit) for 0 ≤ k ≤ t− 1. Then β0 ∈ ∆− and βt−1 = αit ∈

∆+. Hence there exists 1 ≤ m ≤ t− 1 such that βm−1 ∈ ∆−, βm ∈ ∆+. But βm−1 = simβm. Hence
by Theorem 21.2(a), βm = αim ∈ Π. Let w = sim+1 ...sit−1 , by Ex.21.1(d), it follows wsitw

−1 = sim ,
or wsit = simw. The result follows by multiplying both sides by si1 ...sim on the left.

Corollary 21.5. W acts simply transitively on chambers, i.e. if w(C) = C, then w = 1.
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Proof. In the contrary case, w(C) = C for some w 6= 1, hence w(∆+) = ∆+ for ∆+ corresponding
to C. Take a reduced expression w = si1 ...sit , t ≥ 1. Then w(αit) = si1 ...sit−1(−αit) ∈ ∆+. Hence
si1 ...sit−1(αit) ∈ ∆−. Hence by Exchange Lemma, si1 ...sit is nonreduced. Contradiction.

Transitivity is proved in Theorem 21.3 (a).

4


