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Lecture 20 — Explicitly constructing Exceptional Lie Algebras
Prof. Victor Kac Scribe: Vinoth Nandakumar

First consider the simply-laced case: a symmetric Cartan matrix, root system A, root lattice
Q = ZA, satisfying A = {a € Q : (a,a) = 2}. We will construct g, a semisimple Lie algebra,
satisfying g = h@ (P cn FE). We will think of h as F®z Q. The brackets should be the following:
1. [h, K] =0V h,h €,
2. [h, Ey] = —[Ea, h] = (o, h)E,,
3. [Ea, E_y] = —afor a € A,
4. By, Egl = €(o, B)Eq1p if a, f,a+ B € A,
5. [Ea,Egl=0if a,f € A,a+ ¢ AUO
The problem is to find non-zero €(«, §) € F such that g with the four brackets above is a Lie algebra

(i.e. skew-symmetry, Jacobi identity). Then automatically g will be simple with the root system
A, by our general criterion of simplicity.

Proposition 20.1. Je: Q x Q — 1 with the following properties:

1. e(a, B+ 7) = e(a, B)e(r, )

2. e(a+ B,7) = (o, 7)e(B,7)

3. e(a,a) = (=1)(@)/2
Proof. Choose a set II of simple roots {a1, - -+ , o } (so Il is a Z-basis of Q). For each pair i, j, make a
choice of €(a;, oj) and €(aj, ;) subject to the following constraints: €(oy, a;)e(aj, 0g) = (_1)(%%)

(for i # j) and €(a;, ;) = —1. Now extend e bi-multiplicatively to all pairs of elements in Q. Now
we can verify that the relation e(a, a) = (—1)(®®)/2 works, where a = 3", k;a:

e(a, o) = [ [ e(a, o)%*
%,
2 iy
= [ (i, i)™ T (s, ay)e(az, )™
7

1<J
_ (71)ZL k?% H(*l)kjki(ahaj) _ (71)@
1<J
]
Remark. €(o, o) = —1if ais aroot. Further, if a, f € @, we can extend the identity e(c, aj)e(aj, o5) =

(—1)(@%) extends bi-multiplicatively to give e(a, 3)e(8,a) = (—1)(*#). Alternatively, note that
ela+ B,a+ B) = ela,a)e(B, Be(a, Be(B, o) gives us the following: (—1)%(0‘@)"'%(6’5”(“’5) =
(—1)%(""&”%(6’5)6((1,B)e(ﬂ,a), which implies €(a, B)e(8, a) = (—1)(®P),



Theorem 20.2. The brackets (1) — (4) above in g, with the form € defined above, gives a simple
Lie algebra of finite dimension with root system (V =R ®z Q,A).

Proof. The skew-symmetry follows by the Remark, since €(«, 8) = —€(8,«) if « + 8 € A. It now
suffices to check the Jacobi identity when a,b,c € h or Eq(a € A). If a € E,,b € Eg,c € E, and
a+ B+~ ¢ AUO, then the Jacobi identity trivially holds since all three terms are 0. For the same,
it trivially holds when a,b,c € . Otherwise we have the following cases:

Case 1: a,b € h,c = E,. Then we have [a,[b,c]] = (a,b)[a, Ey] = (a,b)(cv,a)Eq, [b,[c,a]] =
—[b,[a, Eq]] = —(,b)(, a) Eqy, [c, [a, b]] = 0, so they sum up to 0, as required.

Case 2: a € h,b = E,,c = Eg. Then we have: [q, [b, c]] = (a+5,a)[b, c]; [b, [c,a]] = —(B,a)b, c]; [c, [a,b]] =
—(av,a)[b, c], so they sum up to 0, as required.

Case 3: a = E,,b=FEg,c=E,, a+ 3+ v =0. Then we have:

L. [Ea, [E/g, E’YH = E(ﬁ, —a = 5)[Ea> E—a] = _6(67 —a)e(ﬁ, _B)O‘
2. [By, [Eq, Egl] = €(a, B)[E—a—p, Ea+p] = €(a, B)(a + B)
3. [Es, By, Ey)] = e(—a— B,a)[Eg, E_g] = —€(—a,a)e(—=B,a)

To note that they sum to 0, observe the following;:

e(ﬁv _5)6(57 —OZ)OZ - 6(—0(, O‘)E(_B7O‘)ﬁ+6(aa6)(a+ﬁ) = 6(6,0L)OL-FE(B,CM)ﬁ—l—E(O(,B)(O&—l—ﬁ) =0

Exercise 20.1. Show that there are remaining two cases when o+ 8 +v € A (i) a = —f (ii)
(a, B) = —1,(8,7) = —1, (e, y) = 0, and check the Jacobi identity in both of them.

Proof. (i) In this case, if (o, ) = 0, then since g is simply laced, a+v,a — v ¢ A, so we have that
[Eas [E—as By]] = 0,[E_a,[Ey, Eall = 0,[Ey, [Ea, E_o]] = [Ey,—a] = (a,7)E, = 0, so all three
terms are 0.

WLOG, the other case is when (a,7y) = —1 (since if (o, y) = 1 switch o with —a), so since g is
simply laced, a +v € A, — v ¢ A. Here we have that [E,, [E_q, E,]] = 0,[E_q, [Ey, E.]] =
€(7,®)[E_q, Eaty] = €(v,0)e(—a, a)e(—a,v)E, while [E,, [Ey, E_o]] = —[Ey, 0] = (o,7)E,. So

it suffices to prove that e(vy,a)e(—a,a)e(—a,y) + (a,v) = 0, which follows from the fact that
e(y, @)e(a,y) = (a,y) = —1 in this case.

(ii) If no two of v, 3,7 sum to 0, then using the fact that (a+ S+, a4+ 8+v) = 2, one deduces that
(a, B) + (a,7y) + (B,7) = —2, so since none of them can be —2 (if («a, 5) = =2, = —f3), after re-
ordering (avﬁ) = -1, (577) = -1, (avly) = 0. Then [Eaa [EﬁﬁE'YH = 6(677)6(0475)6(0‘7W)Eoz-‘rﬁ-ﬁ-’y;
[Eg, [Ey, Eo]] = 0;[Ey, [Ea, Eg]] = €(a, Be(y, @)e(vy, B)Eatpty. So it suffices to show that we
have: €(8,7v)e(a, B)e(a,y) + €(a, B)e(y, a)e(y, 8) = 0, which is true since e(a,v) = e(v, ), e(8,7) =
—e€(7y, ) in this case. O

Above was the simply-laced case. For the non-simply laced case, note by the following two exercises
that each non-simply laced Lie algebra can be expressed as a sub-algebra of a simply-laced one.
More precisely, type B, C Dyy1,C, C Agr_1,Fy C Eg,Go C Dy. To see this, put the following



orientations on the Dynkin diagrams of Eg and D, and define automorphisms of their respective
Dynkin diagram (o9 for Eg and o3 for Dy) switching the indicated vertices:

E 6 [:.4

6 A

) T
1 2 3 4 5 1 3
OO —O—0) (—(—0

Exercise 20.2. Check that the map E; — E, @, Fi — F, (), Hi — Hy(;) defines an automorphism
of g(A), and hence of g(A).

Proof. The relation [H,;), Hy(;)] = 0 holds trivially, as does the relation [E;, Fj] = 0; ;H; (since the
map o is a bijection). It remains to check the relation [Hy;), Eq(;)] = aijE,(j) and the analogous
relation for the F’s; this is exactly equivalent to a;; = a4(;) 4(;), which follows from the fact that
o is an automorphism of the Dynkin diagram and preserves the inner products of its roots. Since
g(A) has a unique maximal ideal, it is invariant under o, hence o induces an automorphism of

g(A). O

Exercise 20.3. For 03, in Eg the eleemtns {X; + X5, Xo + X4, X3, X¢} where X = E, F or H lie
in a fixed point sub-algebra Eg* of o in Eg, and satisfy all Chevalley relations of g(Fy). Likewise,
for o3 and Dy, the elements { X7 + X3 + X4, Xo} satisfy all Chevalley relations of g(Gs).

Proof. 1t is clear that the elements in question lie in the fixed point sub-algebra. In either case,
the first Chevalley relations (that the Cartan subalgebra is abelian) is trivial. The third Chevalley
relation (about the commutator of an E and an F') follows from the third Chevelley relation for Fg
and Fy, combined with the fact that in both sets { X1+ X5, Xo+ X4, X3, Xg} and { X1+ X35+ X4, Xo},
the indices of different elements are distinct. The second Chevalley relation is equivalent to saying
that the in Ejg, the four elements { X1+ X5, Xo+ X4, X3, X¢} correspond (in terms of inner products)
to the four simple roots of Fjy; and that in Dy, the two elements {X; + X3 + X4, X2} correspond
(in terms of inner products) to the two simple roots of Ga. Both of these assertions are trivial to
verify. O

By these exercises, we have homomorphisms g(Fy) — g(Eg)?2, and g(G2) — g(D4)?3. This proves
that g(Fy) and g(G2) are finite dimensional, completing the proof. Soon we will show that in fact,
9(E6)7 = 9(Fu), 9(D4)”* = g(G2). o

Using this explicit construction of simply-laced algebras, we can easily construct a symmetric
invariant bilinear form (which is unique up to constant factor). We have a bilinear form (-, ) on Q;



extend it by bilinearity to h. We let (h, Ey) =0, (Eq, Eg) =0if a4+ 8 # 0, (Eq, E_o) = —1.

Exercise 20.4. Check that this bilinear form is invariant.

Proof. Tt is sufficient to prove that ([a,b],c) = (a,[b,c]) when a,b, c are each either in h or of the
form E,. If a,b,c € b clearly both sides are 0. If a,b € h,¢c = E,, then the LHS is clearly
0, while the RHS is also 0 since (h, E,) = 0; a similar situation happens if b,¢ € h,a = E,. If
a,c € h,b = E,, then both sides are again 0 since (h, E,) = 0. If a = E,,b = Eg,c € b, the LHS
is 0 unless o+ 5 = 0, and [b, ] € FE3, so the RHS is also 0 unless o + § = 0. If a + 3 = 0, then
the LHS is ([Eq, E—o],¢) = —(a, ¢), while the RHS is (Eq, [E—q,¢]) = (o, ¢)(Ea, E_a) = (o, ¢).
By symmetry, the case where ¢ = FE,,b = Eg,a € b follows. If a = E,,b € h,c = Eg, the
LHS is ([Eqa,b], Ey) = —(a,b)(Eq,E,), and the RHS is (Ey, [b, E,]) = (b,7)(Eq, Ey). Clearly both
quantities are equal if o + v = 0, and both quantities are 0 otherwise. The final case is when
a = E4,b = Eg,c = E,; here both sides are clearly 0 unless o + 3 + v = 0. If this quantity is 0,
then the LHS is —e(a, 3), while the RHS is €(8, —a — 8) = —€(8, ) = €(«, 3), where in the last
equality we use the fact that a + 8 is a root. O

Next we define the compact form go of g when F = C D R. Suppose g is simply-laced, and
or = br ® (B,ca RE,) be the Lie algebra over R. Define an automorphism wg of gg by letting it
act as —1 on b, and let wr(F,) = E_q.

Exercise 20.5. Check that this is an automorphism.

Proof. 1t suffices to prove that w([a,b]) = [w(a),w(b)] when a, b are either in h or of the form E,. If
both a, b are in h, then both sides are 0. If a € h,b = E,, then the LHS is w((«, a)Ey) = (v, a) E_q,
while the RHS is [—a, E_,] = (a,a)E_,. Finally, if a = E,,b = Ej3 then both sides are 0 unless
a+ [ is a root; if it is a root then both sides are clearly €(«, ) Eq43 since €(a, 5) = e(—a, —(). O

Now extend wg from gg to g = C ®g gr to be an anti-linear automorphism w, by w(\a) = Aw(a).

Definition 20.1. The fixed point set of w is a Lie algebra over R, gc, called the compact form of
g.

Exercise 20.6. If g = s[,,(C), then gc = su, = {4 € 5[,(C)|A = —A'}, and w(A) = — AL

Proof. In this case, it is clear that Eq,—o; = FEj; if i < j, and —FE;; if i > j (this is to fulfill
the condition [E,, F_,] = —a). Then it is clear that the automorphism wg sends A to —A?, and
consequently w sends A to —A?, as required. O

Proposition 20.3. The restriction of the invariant symmetric bilinear form (-,-) from g to g. is
negative definite.

Proof. We can write gc = ihr + 3 _qen, R(Ea + E—a) + X en, iR(Ea — E—q) and these 3 spaces
are orthogonal to each other. It remains to show that it is negative-definite one each space. This is
true because (ih,ih) = —(h,h) < 0; (Eq+F_o, Ea+E_o) = -2<0,(i(Ey—FE_y),i(Eq—E_,)) =
-2 <0. O



Finally, the restriction of the invariant bilinear form (Killing form) from g(Eg) or g(Dy) to g% is
non-degenerate, hence g?¢ is semi-simple and thus simple. To see this, just take g. N g%, where
g = Fg or Dy4. Since the Killing form is negative definite on g., it is negative definite on g. N g%,
and thus also on its complexification g%. It follows that Eg? = Fy, DJ* = Go.



