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Lecture 20 — Explicitly constructing Exceptional Lie Algebras

Prof. Victor Kac Scribe: Vinoth Nandakumar

First consider the simply-laced case: a symmetric Cartan matrix, root system ∆, root lattice
Q = Z∆, satisfying ∆ = {α ∈ Q : (α, α) = 2}. We will construct g, a semisimple Lie algebra,
satisfying g = h⊕(

⊕
α∈∆ FEα). We will think of h as F⊗ZQ. The brackets should be the following:

1. [h, h′] = 0 ∀ h, h′ ∈ h,

2. [h,Eα] = −[Eα, h] = (α, h)Eα,

3. [Eα, E−α] = −α for α ∈ ∆,

4. [Eα, Eβ] = ε(α, β)Eα+β if α, β, α+ β ∈ ∆,

5. [Eα, Eβ] = 0 if α, β ∈ ∆, α+ β /∈ ∆ ∪ 0

The problem is to find non-zero ε(α, β) ∈ F such that g with the four brackets above is a Lie algebra
(i.e. skew-symmetry, Jacobi identity). Then automatically g will be simple with the root system
∆, by our general criterion of simplicity.

Proposition 20.1. ∃ε : Q×Q→ ±1 with the following properties:

1. ε(α, β + γ) = ε(α, β)ε(α, γ)

2. ε(α+ β, γ) = ε(α, γ)ε(β, γ)

3. ε(α, α) = (−1)(α,α)/2

Proof. Choose a set Π of simple roots {α1, · · · , αr} (so Π is a Z-basis ofQ). For each pair i, j, make a
choice of ε(αi, αj) and ε(αj , αi) subject to the following constraints: ε(αi, αj)ε(αj , αi) = (−1)(αi,αj)

(for i 6= j) and ε(αi, αi) = −1. Now extend ε bi-multiplicatively to all pairs of elements in Q. Now
we can verify that the relation ε(α, α) = (−1)(α,α)/2 works, where α =

∑
i kiαi:

ε(α, α) =
∏
i,j

ε(αi, αj)
kikj

=
∏
i

ε(αi, αi)
k2i

∏
i<j

ε(αi, αj)ε(αj , αi)
kikj

= (−1)
∑
i k

2
i
(αi,αi)

2

∏
i<j

(−1)kjki(αi,αj) = (−1)
(α,α)

2

Remark. ε(α, α) = −1 if α is a root. Further, if α, β ∈ Q, we can extend the identity ε(αi, αj)ε(αj , αi) =
(−1)(αi,αj) extends bi-multiplicatively to give ε(α, β)ε(β, α) = (−1)(α,β). Alternatively, note that

ε(α + β, α + β) = ε(α, α)ε(β, β)ε(α, β)ε(β, α) gives us the following: (−1)
1
2

(α,α)+ 1
2

(β,β)+(α,β) =

(−1)
1
2

(α,α)+ 1
2

(β,β)ε(α, β)ε(β, α), which implies ε(α, β)ε(β, α) = (−1)(α,β).
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Theorem 20.2. The brackets (1) − (4) above in g, with the form ε defined above, gives a simple
Lie algebra of finite dimension with root system (V = R⊗Z Q,∆).

Proof. The skew-symmetry follows by the Remark, since ε(α, β) = −ε(β, α) if α + β ∈ ∆. It now
suffices to check the Jacobi identity when a, b, c ∈ h or Eα(α ∈ ∆). If a ∈ Eα, b ∈ Eβ, c ∈ Eγ and
α+β+γ /∈ ∆∪ 0, then the Jacobi identity trivially holds since all three terms are 0. For the same,
it trivially holds when a, b, c ∈ h. Otherwise we have the following cases:

Case 1: a, b ∈ h, c = Eα. Then we have [a, [b, c]] = (α, b)[a,Eα] = (α, b)(α, a)Eα, [b, [c, a]] =
−[b, [a,Eα]] = −(α, b)(α, a)Eα, [c, [a, b]] = 0, so they sum up to 0, as required.

Case 2: a ∈ h, b = Eα, c = Eβ. Then we have: [a, [b, c]] = (α+β, a)[b, c]; [b, [c, a]] = −(β, a)[b, c]; [c, [a, b]] =
−(α, a)[b, c], so they sum up to 0, as required.

Case 3: a = Eα, b = Eβ, c = Eγ , α+ β + γ = 0. Then we have:

1. [Eα, [Eβ, Eγ ]] = ε(β,−α− β)[Eα, E−α] = −ε(β,−α)ε(β,−β)α

2. [Eγ , [Eα, Eβ]] = ε(α, β)[E−α−β, Eα+β] = ε(α, β)(α+ β)

3. [Eβ, [Eγ , Eα]] = ε(−α− β, α)[Eβ, E−β] = −ε(−α, α)ε(−β, α)β

To note that they sum to 0, observe the following:

ε(β,−β)ε(β,−α)α− ε(−α, α)ε(−β, α)β + ε(α, β)(α+ β) = ε(β, α)α+ ε(β, α)β + ε(α, β)(α+ β) = 0

Exercise 20.1. Show that there are remaining two cases when α + β + γ ∈ ∆ (i) α = −β (ii)
(α, β) = −1, (β, γ) = −1, (α, γ) = 0, and check the Jacobi identity in both of them.

Proof. (i) In this case, if (α, γ) = 0, then since g is simply laced, α+ γ, α− γ /∈ ∆, so we have that
[Eα, [E−α, Eγ ]] = 0, [E−α, [Eγ , Eα]] = 0, [Eγ , [Eα, E−α]] = [Eγ ,−α] = (α, γ)Eγ = 0, so all three
terms are 0.

WLOG, the other case is when (α, γ) = −1 (since if (α, γ) = 1 switch α with −α), so since g is
simply laced, α + γ ∈ ∆, α − γ /∈ ∆. Here we have that [Eα, [E−α, Eγ ]] = 0, [E−α, [Eγ , Eα]] =
ε(γ, α)[E−α, Eα+γ ] = ε(γ, α)ε(−α, α)ε(−α, γ)Eγ while [Eγ , [Eα, E−α]] = −[Eγ , α] = (α, γ)Eγ . So
it suffices to prove that ε(γ, α)ε(−α, α)ε(−α, γ) + (α, γ) = 0, which follows from the fact that
ε(γ, α)ε(α, γ) = (α, γ) = −1 in this case.

(ii) If no two of α, β, γ sum to 0, then using the fact that (α+β+γ, α+β+γ) = 2, one deduces that
(α, β) + (α, γ) + (β, γ) = −2, so since none of them can be −2 (if (α, β) = −2, α = −β), after re-
ordering (α, β) = −1, (β, γ) = −1, (α, γ) = 0. Then [Eα, [Eβ, Eγ ]] = ε(β, γ)ε(α, β)ε(α, γ)Eα+β+γ ;
[Eβ, [Eγ , Eα]] = 0; [Eγ , [Eα, Eβ]] = ε(α, β)ε(γ, α)ε(γ, β)Eα+β+γ . So it suffices to show that we
have: ε(β, γ)ε(α, β)ε(α, γ) + ε(α, β)ε(γ, α)ε(γ, β) = 0, which is true since ε(α, γ) = ε(γ, α), ε(β, γ) =
−ε(γ, β) in this case.

Above was the simply-laced case. For the non-simply laced case, note by the following two exercises
that each non-simply laced Lie algebra can be expressed as a sub-algebra of a simply-laced one.
More precisely, type Br ⊂ Dr+1, Cr ⊂ A2r−1, F4 ⊂ E6, G2 ⊂ D4. To see this, put the following
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orientations on the Dynkin diagrams of E6 and D4 and define automorphisms of their respective
Dynkin diagram (σ2 for E6 and σ3 for D4) switching the indicated vertices:

Exercise 20.2. Check that the map Ei → Eσ(i), Fi → Fσ(i), Hi → Hσ(i) defines an automorphism
of g̃(A), and hence of g(A).

Proof. The relation [Hσ(i), Hσ(j)] = 0 holds trivially, as does the relation [Ei, Fj ] = σi,jHj (since the
map σ is a bijection). It remains to check the relation [Hσ(i), Eσ(j)] = aijEσ(j) and the analogous
relation for the F ’s; this is exactly equivalent to aij = aσ(i),σ(j), which follows from the fact that
σ is an automorphism of the Dynkin diagram and preserves the inner products of its roots. Since
g̃(A) has a unique maximal ideal, it is invariant under σ, hence σ induces an automorphism of
g(A).

Exercise 20.3. For σ2, in E6 the eleemtns {X1 +X5, X2 +X4, X3, X6} where X = E,F or H lie
in a fixed point sub-algebra Eσ26 of σ2 in E6, and satisfy all Chevalley relations of g̃(F4). Likewise,
for σ3 and D4, the elements {X1 +X3 +X4, X2} satisfy all Chevalley relations of g̃(G2).

Proof. It is clear that the elements in question lie in the fixed point sub-algebra. In either case,
the first Chevalley relations (that the Cartan subalgebra is abelian) is trivial. The third Chevalley
relation (about the commutator of an E and an F ) follows from the third Chevelley relation for E6

and F2, combined with the fact that in both sets {X1+X5, X2+X4, X3, X6} and {X1+X3+X4, X2},
the indices of different elements are distinct. The second Chevalley relation is equivalent to saying
that the in E6, the four elements {X1+X5, X2+X4, X3, X6} correspond (in terms of inner products)
to the four simple roots of F4; and that in D4, the two elements {X1 + X3 + X4, X2} correspond
(in terms of inner products) to the two simple roots of G2. Both of these assertions are trivial to
verify.

By these exercises, we have homomorphisms g̃(F4)→ g(E6)σ2 , and g̃(G2)→ g(D4)σ3 . This proves
that g(F4) and g(G2) are finite dimensional, completing the proof. Soon we will show that in fact,
g(E6)σ3 = g(F4), g(D4)σ3 = g(G2).

Using this explicit construction of simply-laced algebras, we can easily construct a symmetric
invariant bilinear form (which is unique up to constant factor). We have a bilinear form (·, ·) on Q;
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extend it by bilinearity to h. We let (h, Eα) = 0, (Eα, Eβ) = 0 if α+ β 6= 0, (Eα, E−α) = −1.

Exercise 20.4. Check that this bilinear form is invariant.

Proof. It is sufficient to prove that ([a, b], c) = (a, [b, c]) when a, b, c are each either in h or of the
form Eα. If a, b, c ∈ h clearly both sides are 0. If a, b ∈ h, c = Eα, then the LHS is clearly
0, while the RHS is also 0 since (h, Eα) = 0; a similar situation happens if b, c ∈ h, a = Eα. If
a, c ∈ h, b = Eα, then both sides are again 0 since (h, Eα) = 0. If a = Eα, b = Eβ, c ∈ h, the LHS
is 0 unless α + β = 0, and [b, c] ∈ FEβ, so the RHS is also 0 unless α + β = 0. If α + β = 0, then
the LHS is ([Eα, E−α], c) = −(α, c), while the RHS is (Eα, [E−α, c]) = (α, c)(Eα, E−α) = (α, c).
By symmetry, the case where c = Eα, b = Eβ, a ∈ h follows. If a = Eα, b ∈ h, c = Eβ, the
LHS is ([Eα, b], Eγ) = −(α, b)(Eα,Eγ), and the RHS is (Eα, [b, Eγ ]) = (b, γ)(Eα, Eγ). Clearly both
quantities are equal if α + γ = 0, and both quantities are 0 otherwise. The final case is when
a = Eα, b = Eβ, c = Eγ ; here both sides are clearly 0 unless α + β + γ = 0. If this quantity is 0,
then the LHS is −ε(α, β), while the RHS is ε(β,−α − β) = −ε(β, α) = ε(α, β), where in the last
equality we use the fact that α+ β is a root.

Next we define the compact form gC of g when F = C ⊃ R. Suppose g is simply-laced, and
gR = hR ⊕ (

⊕
α∈∆ REα) be the Lie algebra over R. Define an automorphism ωR of gR by letting it

act as −1 on h, and let ωR(Eα) = E−α.

Exercise 20.5. Check that this is an automorphism.

Proof. It suffices to prove that ω([a, b]) = [ω(a), ω(b)] when a, b are either in h or of the form Eα. If
both a, b are in h, then both sides are 0. If a ∈ h, b = Eα, then the LHS is ω((α, a)Eα) = (α, a)E−α,
while the RHS is [−a,E−α] = (α, a)E−α. Finally, if a = Eα, b = Eβ then both sides are 0 unless
α+β is a root; if it is a root then both sides are clearly ε(α, β)Eα+β since ε(α, β) = ε(−α,−β).

Now extend ωR from gR to g = C⊗R gR to be an anti-linear automorphism ω, by ω(λa) = λ̄ω(a).

Definition 20.1. The fixed point set of ω is a Lie algebra over R, gC, called the compact form of
g.

Exercise 20.6. If g = sln(C), then gC = sun = {A ∈ sln(C)|A = −Āt}, and ω(A) = −Āt.

Proof. In this case, it is clear that Eαi−αj = Eij if i < j, and −Eij if i > j (this is to fulfill
the condition [Eα, E−α] = −α). Then it is clear that the automorphism ωR sends A to −At, and
consequently ω sends A to −Āt, as required.

Proposition 20.3. The restriction of the invariant symmetric bilinear form (·, ·) from g to gc is
negative definite.

Proof. We can write gc = ihR +
∑

α∈∆+
R(Eα + E−α) +

∑
α∈∆+

iR(Eα − E−α) and these 3 spaces
are orthogonal to each other. It remains to show that it is negative-definite one each space. This is
true because (ih, ih) = −(h, h) < 0; (Eα+E−α, Eα+E−α) = −2 < 0, (i(Eα−E−α), i(Eα−E−α)) =
−2 < 0.
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Finally, the restriction of the invariant bilinear form (Killing form) from g(E6) or g(D4) to gσi is
non-degenerate, hence gσi is semi-simple and thus simple. To see this, just take gc ∩ gσi , where
g = E6 or D4. Since the Killing form is negative definite on gc, it is negative definite on gc ∩ gσi ,
and thus also on its complexification gσi . It follows that Eσ26 = F4, D

σ3
4 = G2.
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