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Lecture 17 — Cartan Matrices and Dynkin Diagrams

Prof. Victor Kac Scribe: Michael Donovan and Andrew Geng

Previously, given a semisimple Lie algebra g we constructed its associated root system (V,∆).
(The construction depends on choosing a Cartan subalgebra, but by Chevalley’s theorem, the root
systems constructed from the same g are isomorphic.) Next, given a root system we’ll construct a
Cartan matrix A, and from this we’ll eventually see how to reconstruct g.

We’ll see that to every root system there corresponds a semisimple Lie algebra, so it’s important
to know all the root systems. Last time we saw the four series Ar, Br, Cr, and Dr, and the three
exceptions E6, E7, and E8. The remaining two exceptions are F4 and G2, which we will describe
in the following exercises.

Exercise 17.1. Define:

V =
4⊕
i=1

Rεi; (εi, εj) = δij ;

QF4 =

{
4∑
i=1

aiεi | all ai ∈ Z or all ai ∈
1

2
+ Z

}
; and

∆F4 = {α ∈ QF4 | (α, α) = 1 or 2} .

Show that (V,∆F4) is an indecomposable root system of rank 4 with 48 roots.

Solution. A simple verification shows ∆ = {±εi,±εi±εj : i 6= j}∪{1/2(±ε1±ε2±ε3±ε4)}, which
has 48 elements.

All that is difficult is to check that the string property holds. For this, we tabulate enough α, β
with the corresponding data p, q, (α, β), (α, α). I will use a shorthand for writing vectors — a string
of four numbers η1η2η3η4 represents the vector η1ε1 + η2ε2 + η3ε3 + η4ε4. Depending on how many
numbers are presumed zero in such a string, we take the other numbers η to be ±1 or ±1/2 as
appropriate.

α β p q p− q (α, β) (α, α)

1000 η1η200 1 + η1 1− η1 2η1 η1 1
0η2η30 0 0 0 0 1
η1η2η3η4 1/2 + η1 1/2− η1 2η1 η1 1

1100 η1000 1/2(1 + η1) 1/2(1− ε1) η1 η1 2
00η30 0 0 0 0 2
η10η30 1/2(1 + η1) 1/2(1− η1) η1 η1 2
η1η2η3η4 δη1=η2=1/2 δη1=η2=−1/2 η1 + η2 η1 + η2 2

1/2(1111) η1000 1/2(1 + η1) 1/2(1− η1) η1 1/2 η1 1
η1η200 δη1=η2=1 δη1=η2=−1 1/2(η1 + η2) 1/2(η1 + η2) 1
η1η2η3η4 2δ4+ + δ3+ + δ2+ 2δ0+ + δ1+ + δ2+

∑
ηi

∑
ηi 1

In the last line here we have written δk+ to mean 1 when there are exactly k positive ηi and zero
otherwise. While considering each calculation of p and q, that the roots actually appear in strings
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without gaps is easily checked. Thus we have a root system. To see that it is indecomposable,
we need to note that all the roots are equivalent under the the equivalence relation generated by
α ∼ α′ when (α, α′) 6= 0. Note that ±εi ∼ 1/2(±ε1±ε2±ε3±ε4), so that {εi, 1/2(±ε1±ε2±ε3±ε4)}
is contained in an equivalence class. Next, ±εi ± εj ∼ εi, showing that all roots are equivalent.
Thus the root system is indecomposable.

Exercise 17.2. Show that the following describes an indecomposable root system with 12 roots:

VG2 = VA2 ;

QG2 = QA2 ; and

∆G2 = {α ∈ QA2 | (α, α) = 2 or 6} .

Solution. ∆ = {(a1, a2, a3) | a1 + a2 + a3 = 0, ai ∈ Z,
∑
a2
i ∈ {2, 6}}. Now in order to have

square sum 2, exactly two of the ai must equal ±1, so we have ±(1,−1, 0),±(1, 0,−1),±(0, 1,−1).
In order to have square sum 6, exactly one must be ±2, and the other two must both be ∓1:
±(2,−1,−1),±(−1, 2,−1),±(−1,−1, 2).

We tabulate enough of the relevant quantities below to verify that G2 is a root system, in the style
of the previous exercise. (Here ε stands for 1 or −1.)

α β p q p− q (α, β) (α, α)

(1,−1, 0) (ε,−ε, 0) 1 + ε 1− ε 2ε 2ε 2
(ε, 0,−ε) 1/2(3 + ε) 1/2(3− ε) ε ε 2

(2ε,−ε,−ε) 3/2(1 + ε) 3/2(1 + ε) 3ε 3ε 2
(−ε,−ε, 2ε) 0 0 0 0 2

(2,−1,−1) (ε,−ε, 0) 1/2(1 + ε) 1/2(1− ε) ε 3ε 6
(0, ε,−ε) 0 0 0 0 6

(2ε,−ε,−ε) 1 + ε 1− ε 2ε 6ε 6
(−ε, 2ε,−ε) 1/2(1− ε) 1/2(1 + ε) −ε −3ε 6

Finally, to see that G2 is irreducible, note that no two of the shorter roots are perpendicular, and
each of the longer roots is not perpendicular to one of the shorter roots.

Definition 17.1. Suppose (V,∆) is a root system and f : V → R is a linear map such that
f(α) 6= 0 for all α ∈ ∆. Then:

(i) α ∈ ∆ is positive if f(α) > 0 and negative if f(α) < 0.

(ii) A positive root is simple if it cannot be written as the sum of two positive roots.

(iii) A highest root θ ∈ ∆ is a root where f is maximal; that is, f(θ) ≥ f(α) for all α ∈ ∆.

Notation 17.1.

• ∆+ is the set of positive roots, and ∆− is the set of negative roots.

• Π ⊂ ∆+ is the set of simple roots.

• Π is indecomposable if it can’t be written as a disjoint union of orthogonal sets Π1 tΠ2 with
Π1 ⊥ Π2.

Theorem 17.1 (Dynkin). (a) If α, β ∈ Π and α 6= β, then α− β /∈ ∆ and (α, β) ≤ 0.
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(b) Every positive root is a nonnegative integer linear combination of simple roots; i.e. ∆+ ⊆
Z≥0Π.

(c) If α ∈ ∆+ r Π then α− γ ∈ ∆ for some γ ∈ ∆; moreover, then α− γ ∈ ∆+.

(d) Π is a basis of V over R and of the lattice Q over Z. Hence the integer linear combinations
from part (b) are unique.

(e) ∆ is indecomposable if and only if Π is indecomposable.

Proof. (a) This is a proof by contradiction. If α− β = γ ∈ ∆, then either

• γ ∈ ∆+, so α = β + γ, which contradicts α ∈ Π; or

• γ ∈ ∆−, so β = α+ (−γ), which contradicts β ∈ Π.

(b) If α is simple then we’re done. Otherwise, α = β + γ for some β, γ ∈ ∆+. Then f(α) =
f(β) + f(γ), so both f(β) and f(γ) are strictly less than f(α). Repeat this process with β
and γ until all summands are simple (which must happen in finitely many steps since ∆ is
finite), thus yielding α as a sum of simple roots.

(c) Suppose α ∈ ∆+ r Π. If α − γ /∈ ∆ for all γ ∈ Π, then the string condition would imply
2(γ,α)
(γ,γ) ≤ 0 for all γ ∈ Π. Then by (b),

(α, α) =

α,∑
γ∈Π

kγγ

 ≤ 0,

which would imply α = 0 and thus α /∈ ∆. Hence α− γ ∈ ∆ for some γ ∈ Π ⊂ ∆.

Now if α−γ = β ∈ ∆−, then γ = α+(−β), which would contradict γ being simple. Therefore
α− γ ∈ ∆+.

(d) From (b) we have that Π spans ∆+ over Z. Then since ∆ = ∆+ ∪∆− = ∆+ ∪ −(∆+) and
Q = Z∆, Π spans Q over Z and thus spans V over R.

To prove linear independence of Π, suppose the contrary—that there existed a nontrivial
linear combination of simple roots

∑
i kiαi = 0. Split this into positive and negative parts,

moving the negative parts to the other side to obtain

γ :=
∑
i

aiαi =
∑
i

biαi,

where all ai and bi are nonnegative and aibi = 0 for all i. Since all αi are positive, f(γ) > 0,
so γ 6= 0 and (γ, γ) > 0. However, by (a) we also have

(γ, γ) =
(∑

aiαi,
∑

bjαj

)
≤ 0,

thus giving us a contradiction.

(e) If (V,∆) is decomposable, then by (d), so is Π. Conversely, if Π decomposes as Π1 tΠ2 with
Π1 ⊥ Π2, then we will show ∆ = (ZΠ1 ∩∆) ∪ (ZΠ2 ∩∆).

3



Suppose the contrary—then α = γ1 + γ2 for some α ∈ ∆ and γi ∈ Z≥0Πi. By flipping the
sign of α if necessary, we can assume α ∈ ∆+. By (b), we can subtract simple roots until γ1

is simple. Then Π1 ⊥ Π2 implies

2(α, γ1)

(γ1, γ1)
=

2(γ1, γ1)

(γ1, γ1)
= 2,

so by the string property β := α− 2γ1 = γ2 − γ1 is a root (it can’t be zero since Π1 ⊥ Π2).

Flipping the sign of β if necessary, we can assume β ∈ ∆+. However, the decomposition
β = γ2− γ1 (or γ1− γ2 if we flipped the sign) can be made into an integer linear combination
of simple roots with mixed signs (by expanding γ2 in terms of simple roots). By (d), this
linear combination is unique, so the nonnegative linear combination guaranteed by (b) cannot
exist.

Exercise 17.3. Prove that if (V,∆) is an indecomposable root system and f : V → R is a linear
map such that f(α) 6= 0 for all α ∈ ∆, then there exists a unique highest root θ ∈ ∆.

Solution. Suppose first that θ =
∑
λiαi is a highest root. We wish first to show that λi > 0 for

all i (it is a basic property of root systems that λi ≥ 0 for all i). Suppose on the contrary that
λj = 0. Expanding (αj , θ) =

∑
λi(αj , αi), as all the simple roots are at obtuse or right angles,

we have (αj , θ) ≤ 0, with equality iff αj ⊥ αi whenever λi 6= 0. Now as θ + αj cannot be a root,
the string condition implies that (αj , θ) = 0. Thus αj ⊥ αi whenever λi 6= 0 and λj = 0. Thus, if
λj = 0 for some j, the simple roots decompose into disjoint perpendicular subsets {αj : λj = 0}
and {αj : λj 6= 0}. This is impossible, as the root system is indecomposable.

Now suppose we have two distinct highest roots θ and θ̃. Then (θ, θ̃) ≤ 0, as otherwise θ − θ̃ is a
root (yet f(θ− θ̃) = 0 which is impossible). Thus 0 ≥ (θ, θ̃) =

∑
λi(αi, θ̃), showing that (αi, θ̃) = 0

(as the string condition implies that (αi, θ̃) ≥ 0 for each i). Yet then θ̃ is perpendicular to a basis
of V , so θ = 0, a contradiction.

Definition 17.2. Let Π = {α1, . . . , αr} be the set of simple roots of ∆ (corresponding to f). The

matrix A =
(

2(αi,αj)
(αi,αi)

)r
ij=1

is called the Cartan matrix. We will show later that it is independent of

choice of f .

Proposition 17.2. The Cartan matrix has all entries integers, and the following properties:

(a) Aii = 2 for all i.

(b) If i 6= j then Aij ≤ 0, and Aij = 0 ⇐⇒ Aji = 0.

(c) All principle values of A are positive. In particular, detA > 0.

Proof. (a) is immediate, and (b) follows by Theorem 17.1(a). For (c), we note that we may factorise

A as diag
(

2
(αi,αi)

)r
i=1
· ((αi, αj))rij=1. The first term may be ignored, while the second is the Gram

matrix for the inner product with respect to Π. The result follows by Sylvester’s criterion.

Definition 17.3. If V,∆) is indecomposable, we have a unique highest root θ (by the above

exercise). Let α0 = −θ, and Π0 = {α0, α1, . . . , αr}. The matrix Ã =
(

2(αi,αj)
(αi,αi)

)r
ij=0

is called the

extended Cartan matrix.
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Exercise 17.4. Ã satisfies all of the properties of Proposition 17.2, except det Ã = 0.

Solution. The proof of properties (a) and (b) are exactly the same as for the standard Cartan
matrix A. However, we need to see tht the principle minors are still all positive, except for the
determinant (which is zero).

Again, Ã factors as Ã = diag(2/(αi, αi))
n
i=0 · ((αi, αj))nij=0, and the first matrix has all diagonal

entries positive, so we only need to investigate the principle minors of Q = ((αi, αi))
n
i=0·.

Given any proper subset I of {0, . . . , n}, I is a subset of some subset I ′ of {0, . . . , n} with n elements.
Now the αi with i ∈ I ′ are a basis of V , as the highest root is

∑
λiαi with the λi nonzero. Thus

the submatrix of Q corresponding to I ′ is a Gram matrix for the inner product, and thus has
all principle minors zero. In particular, the principle minor of Q corresponding to I is nonzero
(by Sylvester’s criterion), and thus so is the corresponding principle minor of Ã. Of course, the
determinant of Q (and thus A) is zero as the αi (i = 0, . . . , n) are not linearly independent.

Definition 17.4. A r × r matrix satisfying all of the properties of Proposition 17.2 is called an
abstract Cartan matrix.

Let’s classify the abstract Cartan matrices. The only 1 × 1 such matrix is (2), the Cartan matrix
of type A1. There are more possibilities for 2 × 2 abstract Cartan matrices A. We know that
A =

(
2 −a
−b 2

)
for nonnegative integers a, b. Moreover, 4 − ab > 0, so that ab = 3. There are four

possibilities for A (up to taking the transpose):[
2 0
0 2

]
,

[
2 −1
−1 2

]
,

[
2 −1
−2 2

]
, and

[
2 −1
−3 2

]
.

The Dynkin diagram D(A) depicts the Cartan matrix A by a graph with r vertices in bijection
with the simple roots. For any two distinct simple roots αi and αj , the corresponding 2× 2 Cartan
matrix will be one of the above four, or a transpose thereof. The vertices corresponding to a chosen
pair of roots are joined as follows in each case:[

2 0
0 2

] [
2 −1
−1 2

] [
2 −1
−2 2

] [
2 −2
−1 2

] [
2 −1
−3 2

] [
2 −3
−1 2

]
◦ ◦ ◦−−◦ ◦==>◦ ◦<==◦ ◦≡≡>◦ ◦<≡≡◦

In each diagram, the left node corresponds to the first row and column of the matrix. Note that
when the two roots in question have different lengths, the arrow points to the shorter root. The
diagram formed in this way is the Dynkin diagram D(A).

Remark. Any subdiagram of a Dynkin diagram is again a Dynkin diagram. Π is indecomposable if
and only if the Dynkin diagram is connected.

We can now calculate Cartan matrices and Dynkin diagrams for various root systems. In each of
the following root systems, we have {εi} an orthonormal set of vectors (which is enough to calculate
inner products).

For Ar, ∆ = {εi − εj : 1 ≤ i, j ≤ r + 1, i 6= j}. Letting f(εi) = r + 1− i, the simple roots may be
indentified easily, as they all take value 1 under f . We find:

∆+ = {εi − εj : 1 ≤ i < j ≤ r + 1} ⊃ Π = {ei − ei+1 : 1 ≤ i ≤ r}, and θ = ε1 − εr+1.
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For the rest of the root systems treated in this lecture, we use the same function f (although there
is no basis vector εr+1).

For Br, ∆ = {±εi ± εj ,±εi : 1 ≤ i, j ≤ r, i 6= j}. We find:

Π = {ei − ei+1 : 1 ≤ i ≤ r − 1} ∪ {εr}, and θ = ε1 + ε2.

The Cartan matrices are shown below when r = 6 — the pattern can be read off easily enough.
The augmented Cartan matrices are the whole matrix, where the standard matrix is the bottom
right 6× 6 block.

A6 :



2 −1 0 0 0 0 −1

−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
−1 0 0 0 0 −1 2


B6 :



2 0 −1 0 0 0 0

0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −2 2



Ar : l l l s s s l l
l+

Br : l l l s s s l l
l+

These diagrams are the extended Dynkin diagrams, while the Dynkin diagrams are obtained by
removing the node marked with +. (This comment applies to all four Dynking diagrams shown.)

Exercise 17.5. Perform the same analysis for the root systems Cr (r ≥ 2) and Dr (r ≥ 3).

Solution. For Cr, ∆ = {±εi±εj ,±2εi | i 6= j}, ∆+ = {εi+εj , εi−εj | i 6= j}∪{2εi} and Π = {αi},
where αi = εi − εi+1 (1 ≤ i < r) and αr = 2εr. Furthermore, α0 = −2ε1.

For Dr, ∆ = {±εi ± εj | i 6= j}, ∆+ = {εi + εj , εi − εj | i 6= j} and Π = {αi}, where αi = εi − εi+1

(1 ≤ i < r) and αr = εr−1 + εr. Furthermore, α0 = −ε1 − ε2.

C6 :



2 −1 0 0 0 0 0

−2 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −2
0 0 0 0 0 −1 2


D6 :



2 0 −1 0 0 0 0

0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 −1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2


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Cr : l l l s s s l l+

Dr : l l s s sl l������
l

PPPPPP l

l+

Exercise 17.6. Draw on the plane the root systems A1 ×A1, A2, B2 and G2.

Solution.

B2:

c c c

c c c

c c

G2:

cc
c

c c

c
c

c

c

c

c

c

A2:

c

c

c

c

c

c

A1 ×A1:

c c

c

c
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