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Recall
OV,B(F) = {a ∈ glV (F) | B(au, v) +B(u, av) = 0, for all u, v ∈ V } ⊂ glV (F)

where V is a vector space over F, B is a bilinear form : V xV → F. Choosing a basis of V and
denoting by B the matrix of the bilinear form in this basis, we proved we get the subalgebra

on,B(F) = {a ∈ gln(F) | aTB +Ba = 0} ⊂ gln(F).

For different choices of basis, we get isomorphic Lie algebras on,B(F).

Now, consider the case where B is a symmetric non-degenerate bilinear form. If F is algebraically
closed and char F 6= 2, one can choose a basis in which the matrix of B is any symmetric non-
degenerate matrix.

Example 15.1. IN where N = dimV .

We will choose a basis such that

B =



0 0 0 · · · 1

0 0 . .
.

0
. . . 1

...
... 1

. . . 0

. .
.

0 0
1 · · · 0 0 0


and denote by soN (F) the corresponding Lie algebra oN,B(F).

Exercise 15.1. Show soN (F) = {a ∈ glN (F)|a + a′ = 0} where a′ is the transposition of a with
respect to the anti-diagonal.

Proof. soN (F) = {a ∈ glNF) | aTB + Ba = 0} where B is the matrix consisting of ones along the
anti-diagonal.

As B = BT , we have aTB = aTBT = (Ba)T . Viewing B as a permutation matrix, we get Ba
permutes the rows by rowi → rown−i. Transposing and reapplying B, we get B(Ba)T = a′ and
BBa = a. Hence we obtain the following sequence of implications

aTB +Ba = 0

(Ba)T +Ba = 0

B(Ba)T + a = 0
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and finally
a′ + a = 0.

Therefore, soN (F) = {a ∈ glN (F)|a+ a′ = 0}.

Example 15.2. so2(F) = {
(
α 0
0 −α

)
, α ∈ F}, which is one-dimensional abelian, hence not

semisimple.

Proposition 15.1. Assume N ≥ 3, then soN (F) is semisimple.

Proof. We show this by the study of the root space decomposition.

Case 1: N = 2n+ 1 (odd). Let

h =



a1

. . .

an
0
−an

. . .

−a1


. ⊂ so2n+1(F)

This is a Cartan subalgebra since it contains a diagonal matrix with distinct entries.

Case 2: N = 2n (even). Let

h =



a1

. . .

an
−an

. . .

−a1


.

This is a Cartan subalgebra for the same reason.

In both cases, dim h = n and ε1, ..., εn form a basis h∗. Note that εN+1−j |h = −εj |h and εN+1
2
|h = 0

if N is odd.

Next, all eigenvectors for ad h are elements ei,j − eN+1−j,N+1−i, i, j ∈ {1, 2, ..., N} and the root is
εi − εj |h.

Hence the set of roots is:

N = 2n+ 1 : ∆soN (F) = {εi − εj , εi,−εi, εi + εj ,−εi − εj | i, j ∈ {1, ..., n}, i 6= j}

N = 2n : ∆soN (F) = {εi − εj , εi + εj ,−εi − εj | i, j ∈ {1, ..., n}, i 6= j}
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Exercise 15.2. a) Using the root space decomposition, prove that soN (F) is semisimple if N ≥ 3.

b) Show soN (F) is simple if N = 3 or N ≥ 5 by showing that ∆ is indecomposable.

Thus we have another two series of simple Lie algebras: so2n+1(F) for n ≥ 1 (type B) and so2n(F)
for n ≥ 3 (type D).

Proof. a) We must check (1), (2), and (3) of the semisimplicity criterion.

(1) is clear for B and D and (3) is clear for B. For (3) in case D, we have roots εi − εj and εi + εj ,
adding and dividing by 2 (as char F 6= 2) gives us εi, hence (3) holds.

(2) We compute [gα, g−α] = [eij − eN+1−j,N+1−i, eji − eN+1−i,N+1−j ] = (eii − eN+1−i,N+1−i) +
(eN+1−j,N+1−j − ejj) = hα ∈ h. As α(hα) 6= 0, soN is semisimple in N ≥ 3.

b) To show simple for N = 3 and N ≥ 5, we show that ∆ is indecomposable. This is clear for
N = 3. We list pairs and corresponding paths for n ≥ 3. N = 5 is done separately. For ease of
notation, we write εi as i and remark that any root is connected to its negative by the path of
length one.

• (i+ j)→ (j + k) via (i+ j,−k − i, j + k)

• (i+ j)→ (i− j) via (i+ j, k − i, j − k, i− j)

• (i+ j)→ (i) via (i+ j,−j, i)
Therefore when N > 5, we may concatenate and find paths through (i + j). When N = 5,
we had the issue of connecting (i + j) to (i − j). As N is odd in this case, we may use the
path (i+ j,−i, i− j). Therefore, soN (F) is simple for N = 3 and N ≥ 5.

Exercise 15.3. Show ∆so4(F) = {ε1 − ε2, ε2 − ε1} t {ε1 + ε2,−ε1 − ε2} is the decomposition into
decomposables. Deduce that so4(F) is isomorphic to sl2(F)⊕ sl2(F).

Proof. We have the decomposition

{ε1 − ε2, ε2 − ε1} t {ε1 + ε2,−ε1 − ε2}.

This is in fact a decomposition since the collection of roots distance one from ε1 − ε2 is ε2 − ε1 as
ε1 − ε2 + ε1 + ε2 = 2ε1 /∈ ∆ and ε1 − ε2 +−ε1 − ε2 = −2ε2 /∈ ∆. Hence, we have a decomposition.

To show isomorphic to sl2 ⊕ sl2. Consider the basis of h, x = e11 − e44 and y = e22 − e33. If we
change bases to from x, y to x+ y, x− y. Let

e = e12 − e34, f = e13 − e24, g = e31 − e42, h = e21 − e43.

Then
[x+ y, e] = 0, [x+ y, f ] = 2f, [x+ y, g] = −2g, [x+ y, h] = 0, [g + f ] = x+ y

and
[x− y, e] = 2e, [x− y, f ] = 0, [x− y, g] = 0, [x− y, h] = −2h, [e, h] = x− y
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and finally
[x+ y, x− y] = [e, f ] = [e, g] = [h, f ] = [h, g] = 0.

Therefore, we have two copies of sl2 formed by {f, g, x + y} and {e, h, x − y}, and therefore an
isomorphism.

Next consider the case where B is a skew-symmetric non-degenerate bilinear form. If F is of
characteristic 6= 2, one can choose a basis in which the matrix of B is any skew-symmetric non-
degenerate matrix where N = dimV = 2n (even). We get

spn,B = {a ∈ gln(F) | aTB +BaT = 0} ⊂ gln(F).

The best choice of B is

B =



0 0 0 · · · 1

0 0 . .
.

0
. . . 1

...
... −1

. . . 0

. .
.

0 0
−1 · · · 0 0 0


.

Exercise 15.4. Repeat the discussion we’ve done for soN (F) in the case sp2n(F). First:

sp2n(F) = {
(
a b
c d

)
all a, b, c, d are n x n such that b = b′, c = c′, d = −a′}

Next, let h be the set of all diagonal matrices in sp2n(F)

h = {



a1

. . .

ar
−ar

. . .

−a1


, ai ∈ F}

Find all eigenvectors for ad h. Show that the set of roots is

∆sp2n(F) = {εi − εj , 2εi,−2εi, εi + εj ,−εi − εj | i, j ∈ {1, ..., n}, i 6= j}

Show always indecomposable and deduce that sp2n(F) simple for all n ≥ 1.

These Lie algebras are called type C simple Lie algebras.

Proof. We must check (1),(2), and (3) of the semisimplicity criterion. (1) is clear.

For (2), split a matrix M into its four quadrants. Label the upper left quadrant A. The upper left
half of the upper right quadrant B, with that portion of the anti-diagonal X. Finally, the upper
left half of the lower left quadrant C, with that portion of the anti-diagonal Y . We then have the
following eigenvectors.
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• eij − eN+1−j,N+1−i if eij ∈ A

• eij + eN+1−j,N+1−i if eij ∈ B ∪ C

• eij if eij ∈ X ∪ Y

with eigenvalues εi − εj , εi + εj ,−εi − εj , 2εi,−2εi for eij ∈ A,B,C,X, Y respectively.

To compute [gα, g−α], we have

[eij − eN+1−j,N+1−i, eji − eN+1−i,N+1−j ] = (eii − eN+1−i,N+1−i) + (eN+1−j,N+1−j − ejj) = hα ∈ h

[eij + eN+1−j,N+1−i, eji + eN+1−i,N+1−j ] = (eii − eN+1−i,N+1−i)− (eN+1−j,N+1−j − ejj) = hα ∈ h

[eij , ejj ] = eii − ejj = hα ∈ h.

In each case α(hα) 6= 0, and therefore (2) holds.

Finally, (3) is clear, so we only must show in-decomposablility to get simplicity.

From Exercise 15.2, when n ≥ 3, have that all pairs of the form ±εi ± εj are connected to εi − εj .
We may connect 2εj to εi − εj as 2εj + εi − εj = εi + εj ∈ ∆ and therefore through concatenation
we are done.

When n = 2 we may connect εi − εj to εi + εj as εi − εj + εi + εj = 2εi ∈ ∆, so we have in-
decomposability.

When n = 1, indecomposability is clear.

Remark 1. Thus we get four series of simple Lie algebras An = sln(F)(n ≥ 1), Bn = so2n+1(F)(n ≥
1), Cn = sp2n(F)(n ≥ 1), Dn = so2n(F), (n ≥ 4) called the classical simple Lie algebras.

Proposition 15.2. Let g be a simple finite dimensional Lie algebra. Then

a) Any symmetric invariant bilinear form is either non-degenerate or identically zero.

b) Any two non-degenerate such bilinear forms are proportional: (a, b)1 = λ(a, b)2.

Proof. a) If (·, ·) is an invariant bilinear form and I is its kernel, then I is an ideal, hence g simple
implies that either I = 0 or I = g.

b) Choose a basis of g and let Bi be the matrix of (·, ·)i in the basis. Det(Bi) 6= 0. Consider
det(B1 − λB2) = det(B2)det(B1B

−1
2 − λI) = 0 if λ is an eigenvalue of B1B

−1
2 . Hence the form

(a, b)1−λ(a, b)2 is a degenerate, invariant, bilinear form as det is 0. Hence the form (a, b)1−λ(a, b)2
is identically zero by (a), which implies (a, b)1 = λ(a, b)2.

Corollary 15.3. If g ⊂ glN (F) is a simple Lie algebra, then the Killing from on g is proportional
to the trace form (a, b) = tr ab on g.

Example 15.3. On glN (F): (1) tr eiieij = δij (with eii basis of D), hence the induced bilinear
form on D∗ = (εi, εj) = δij (2). Hence for all classical simple Lie algebras A,B,C,D, the Killing
form is a positive constant multiple of (1) and on h∗ is a positive constant multiple of (2).
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Definition 15.1. Let V be a finite dimensional real Euclidean space, i.e. V finite dimensional
vector space over R with symmetric positive definite bilinear form (·, ·).

Let ∆ ⊂ V be a subset of V . Then the pair (V,∆) is called a root system if:

i) ∆ finite, 0 /∈ ∆, ∆ spans V over R;

ii) (String Condition) For any α, β ∈ ∆, the set {β+ jα | j ∈ Z}
⋂

(∆∪{0}) is a string β+pα, β+
(p− 1)α, ..., β − qα where p, q ∈ Z, and p− q = 2 (α,β)

(α,α) ;

iii) For all α ∈ ∆, we have kα ∈ ∆ if and only if k = 1 or k = −1.

Example 15.4. The basic example: Let g be a finite dimensional Lie algebra over an algebraically
closed field F of characteristic 0, h a Cartan subalgebra, ∆ ⊂ h∗Q the set of roots, (·, ·) the Killing
form on h∗Q which is Q-valued and positive definite.

Let V = R ⊗Q h∗Q, i.e. linear combinations of roots with real coefficients and extend the Killing
form by bilinearity. Then the pair (V,∆) is a root system, called the g root system.

Remark 2. This construction is independent of the choice of the Cartan subalgebra h due to
Chevalley’s Theorem.

Exercise 15.5. Let (V,∆) be a root system. Then ∆ is indecomposable if and only if there does
not exist non-trivial decomposition (V,∆) = (V1,∆1) ⊕ (V2,∆2) where V = V1 ⊕ V2, V1 ⊥ V2,
∆i ⊂ Vi, and ∆ = ∆1 ∪∆2. (Hint: Use String Condition)

Moreover, the decomposition of ∆ =
⊔

∆i into indecomposable sets corresponds to decomposition
of the root system in the orthogonal direct sum of indecomposable root systems.

Proof. For the first direction, suppose we have a decomposition ∆ = ∆1 t∆2,∆i ⊂ Vi, α ∈ ∆i, β ∈
∆2. Therefore, α + β /∈ ∆ ∪ {0}, hence q = 0. As well, clearly −α ∈ ∆2, so p = 0. Therefore,
2(α,β)
(α,α) = 0, hence (α, β) = 0. Let Vi = span(∆i), then by above V1 ⊥ V2, and thus V = V1 ⊕ V2.

On the other hand, suppose V = V1 ⊕ V2, V1 ⊥ V2. Choose ∆i = ∆ ∩ Vi. We show ∆1 t ∆2 is
a decomposition. In the contrary case, choose α ∈ ∆i, β ∈ ∆2 and suppose α + β ∈ ∆ ∪ {0}.
Then, α+ β 6= 0 since (α,−α) 6= 0, so α+ β ∈ ∆. Without loss of generality, α+ β ∈ ∆1 ⊂ V1, as
β ∈ ∆2 ⊂ V2 and V1 ⊥ V2, we have 0 = (α+β, β) = (α, β)+(β, β) = (β, β). This is a contradiction,
hence α+ β /∈ ∆, so we have a decomposition.

By the above argument, it is clear that the decomposition into indecomposables corresponds to the
orthogonal decomposition with respect to (·, ·).
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