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Recall
Oy s(F) = {a € gly(F) | B(au,v) + B(u,av) =0, for all u,v € V} C gly(F)

where V' is a vector space over F, B is a bilinear form : VxV — F. Choosing a basis of V and
denoting by B the matrix of the bilinear form in this basis, we proved we get the subalgebra

on.B(F) = {a € gl,(F) | a” B+ Ba = 0} C gl,(F).

For different choices of basis, we get isomorphic Lie algebras o, g(F).

Now, consider the case where B is a symmetric non-degenerate bilinear form. If F is algebraically
closed and char F # 2, one can choose a basis in which the matrix of B is any symmetric non-
degenerate matrix.

Example 15.1. Iy where N =dim V.

We will choose a basis such that

0 0 O 1
0 0
B 0 1
1 0
0 0
1 0O 0 0

and denote by son(F) the corresponding Lie algebra oy, g(F).

Exercise 15.1. Show son(F) = {a € gly(F)|a + o’ = 0} where @ is the transposition of a with
respect to the anti-diagonal.

Proof. son(F) = {a € gINyF) | a’ B+ Ba = 0} where B is the matrix consisting of ones along the
anti-diagonal.

As B = BT, we have "B = a” BT = (Ba)”. Viewing B as a permutation matrix, we get Ba
permutes the rows by row; — row,_;. Transposing and reapplying B, we get B(Ba)T = d’ and
BBa = a. Hence we obtain the following sequence of implications

a'B+ Ba=0

(Ba)l' + Ba=0
B(Ba)' +a=0



and finally
a +a=0.

Therefore, son(F) = {a € gly(F)|a + o’ = 0}.
O

a 0

Example 15.2. sos(F) = {( 0 —a ) ,a € F}, which is one-dimensional abelian, hence not

semisimple.

Proposition 15.1. Assume N > 3, then son(F) is semisimple.

Proof. We show this by the study of the root space decomposition.
Case 1: N =2n+1 (odd). Let

ai

h= 0 . C 809n+1(F)

This is a Cartan subalgebra since it contains a diagonal matrix with distinct entries.

Case 2: N = 2n (even). Let

ai

h= —a,
—ay
This is a Cartan subalgebra for the same reason.
In both cases, dimbh = n and €y, ..., €, form a basis h*. Note that ey41—j[y = —€j|p and enz1|p =0
2

if N is odd.

Next, all eigenvectors for ad b are elements e; ; — en+1-j N+1-i,%,J € {1,2,..., N} and the root is
€ — €jlp-

Hence the set of roots is:

N=2n+1:0,m =1{6—¢j¢,—¢€,ei+e¢j,—ei—¢; | i, €{1,...,n}i#j}

N =2n: Ay @ =16 — ¢, 6+, —€—e | 4,5 €{1,....,n},i# j} O



Exercise 15.2. a) Using the root space decomposition, prove that soy(F) is semisimple if N > 3.
b) Show son(F) is simple if N =3 or N > 5 by showing that A is indecomposable.

Thus we have another two series of simple Lie algebras: sog,+1(F) for n > 1 (type B) and sog, (F)
for n > 3 (type D).

Proof. a) We must check (1), (2), and (3) of the semisimplicity criterion.

(1) is clear for B and D and (3) is clear for B. For (3) in case D, we have roots €; — €; and €; + €;,
adding and dividing by 2 (as char F # 2) gives us ¢;, hence (3) holds.

(2) We compute [ga,g-a] = [€ij — eN+1—j,N+1-i»€ji — EN+1—i,N+1—j] = (€ii — eNf1—i,N+1—i) +
(eN+1—jN+1—j — €j;) = ha € h. As a(hq) # 0, son is semisimple in N > 3.

b) To show simple for N = 3 and N > 5, we show that A is indecomposable. This is clear for
N = 3. We list pairs and corresponding paths for n > 3. N = 5 is done separately. For ease of
notation, we write ¢; as ¢ and remark that any root is connected to its negative by the path of
length one.

e (i+j)—(G+k)via(i+j,—k—1i,j+k)
o (i) = (i—j)via i+ .k —i,j — kyi— )
o (i+j)— (1) via (i+j,—j,i)
Therefore when N > 5, we may concatenate and find paths through (i + j). When N = 5,

we had the issue of connecting (i 4+ j) to (i — 7). As N is odd in this case, we may use the
path (i 4+ j, —i,i — j). Therefore, soy(F) is simple for N =3 and N > 5.

O
Exercise 15.3. Show A, ) = {e1 — e9,e9 — €1} U {e1 + €2, —€1 — €2} is the decomposition into

decomposables. Deduce that so4(F) is isomorphic to sly(F) @ slo(TF).

Proof. We have the decomposition

{e1 —e2,e2a —e1} U {e1 + €2, —€1 — e}

This is in fact a decomposition since the collection of roots distance one from €1 — €3 is €5 — €1 as
€1 —€x+ €1 +€ =2 ¢ A and €1 — €2 + —€1 — €3 = —2¢9 ¢ A. Hence, we have a decomposition.

To show isomorphic to sly @ sls. Consider the basis of h, x = e;1 — eqq and y = eqo — e33. If we
change bases to from x,y to z + y,z — y. Let

e=e12 —e3q, [ = €13 — €24, = €31 — €42, h = ea1 — e43.

Then
[z +y, el =0,z +y fl=2f [z +y,g] = 29, (v +y,h| =0,[g+ fl=2+y

and
[z —y,e] =2e,[x—y, f]=0,[xr —y,9] =0,[x —y,h] = —2h,[e,h]| =2z —y



and finally
[az+y,x—y] = [eaf] = [evg] = [h>f] = [hvg] =0.

Therefore, we have two copies of sly formed by {f, g,z + y} and {e, h,x — y}, and therefore an
isomorphism. O

Next consider the case where B is a skew-symmetric non-degenerate bilinear form. If F is of

characteristic # 2, one can choose a basis in which the matrix of B is any skew-symmetric non-
degenerate matrix where N = dimV' = 2n (even). We get

spn.p = {a € gl,(F) | a B + Ba™ = 0} C gl,,(F).

The best choice of B is

0 0 O 1
0 0
B 0 1
-1 . 0
. 0 0
-1 . 0 0 0

Exercise 15.4. Repeat the discussion we’ve done for son(F) in the case spa,(F). First:

san(IE‘):{< CCL Z) all a,b,c,d are n x n such that b=V ,c=c,d = —d'}

Next, let h be the set of all diagonal matrices in spa, (F)

a

,aiEF}

—a,

—ay
Find all eigenvectors for ad h. Show that the set of roots is

Agp,, ) = {6 — €5, 261, —2€i, ¢, + €5, —€; — € | i, € {1,...,n},i # j}
Show always indecomposable and deduce that spe, (IF) simple for all n > 1.

These Lie algebras are called type C simple Lie algebras.

Proof. We must check (1),(2), and (3) of the semisimplicity criterion. (1) is clear.

For (2), split a matrix M into its four quadrants. Label the upper left quadrant A. The upper left
half of the upper right quadrant B, with that portion of the anti-diagonal X. Finally, the upper
left half of the lower left quadrant C, with that portion of the anti-diagonal Y. We then have the
following eigenvectors.



® ¢jj —eNy1-jNt1-iif ej; € A
® ¢ FEeN+1—jN+1—i if eij € BuUC

® € ifeijEXUY

with eigenvalues €; — €, €; + €5, —€; — €5, 2¢;, —2¢; for e;; € A, B,C, X,Y respectively.

To compute [gqa, §—a), we have
[€ij — EN+1—j,N+1—is€ji — EN+1—i,N+1—j] = (€ii — eNt1—i,N+1—i) + (ENt1—j,N+1—j — €jj) = ha € b

leij + eNt1—j,N+1—is€ji + eN+1—i,N+1—j] = (€ii — eNt1—i,N+1—i) — (EN41—j,N+1—j — €jj) = ha €D
[eij; €j5] = €ii — €j; = ha € b.

In each case a(h,) # 0, and therefore (2) holds.

Finally, (3) is clear, so we only must show in-decomposablility to get simplicity.

From Exercise 15.2, when n > 3, have that all pairs of the form +e; & ¢; are connected to €; — ;.
We may connect 2¢; to €; — €5 as 2¢; + €; — €; = €; + ¢; € A and therefore through concatenation
we are done.

When n = 2 we may connect €; — € to €; +€; as ¢ —€j + € +€; = 2¢; € A, so we have in-
decomposability.

When n = 1, indecomposability is clear.

O

Remark 1. Thus we get four series of simple Lie algebras A,, = sl,(F)(n > 1), B,, = so2p+1(F)(n >
1), Cy, = span(F)(n > 1), D, = s02,(F), (n > 4) called the classical simple Lie algebras.

Proposition 15.2. Let g be a simple finite dimensional Lie algebra. Then
a) Any symmetric invariant bilinear form is either non-degenerate or identically zero.

b) Any two non-degenerate such bilinear forms are proportional: (a,b);1 = A(a,b)2.

Proof. a) If (-,-) is an invariant bilinear form and [ is its kernel, then I is an ideal, hence g simple
implies that either I =0 or I = g.

b) Choose a basis of g and let B; be the matrix of (-,-); in the basis. Det(B;) # 0. Consider
det(B; — ABy) = det(By)det(B1By' — M) = 0 if A is an eigenvalue of B;By!. Hence the form
(a,b)1 —A(a,b)2 is a degenerate, invariant, bilinear form as det is 0. Hence the form (a, b); —\(a, b)2
is identically zero by (a), which implies (a,b); = A(a,b)s. O

Corollary 15.3. If g C gin(F) is a simple Lie algebra, then the Killing from on g is proportional
to the trace form (a,b) = tr ab on g.

Example 15.3. On gly(F): (1) tr eje;; = 6;; (with ej; basis of D), hence the induced bilinear
form on D* = (&;,€;) = 6;; (2). Hence for all classical simple Lie algebras A,B,C,D, the Killing
form is a positive constant multiple of (1) and on h* is a positive constant multiple of (2).



Definition 15.1. Let V be a finite dimensional real Euclidean space, i.e. V finite dimensional
vector space over R with symmetric positive definite bilinear form (-, -).

Let A C V be a subset of V. Then the pair (V, A) is called a root system if:
i) A finite, 0 ¢ A, A spans V over R;

ii) (String Condition) For any «, 5 € A, the set {f+ja | j € Z} () (AU{0}) is a string 8+ pa, B+

(p—Da,..., 8 — qo where p,q € Z, and p — g = 28‘:5);

iii) For all & € A, we have ko € Aif and only if k =1 or k = —1.

Example 15.4. The basic example: Let g be a finite dimensional Lie algebra over an algebraically
closed field F of characteristic 0, h a Cartan subalgebra, A C by, the set of roots, (-,) the Killing
form on bf‘@ which is Q-valued and positive definite.

Let V = R®q b@, i.e. linear combinations of roots with real coefficients and extend the Killing
form by bilinearity. Then the pair (V, A) is a root system, called the g root system.

Remark 2. This construction is independent of the choice of the Cartan subalgebra h due to
Chevalley’s Theorem.

Exercise 15.5. Let (V,A) be a root system. Then A is indecomposable if and only if there does
not exist non-trivial decomposition (V,A) = (V1,A1) @ (Vo,Ag) where V. = V3 @& Vo, Vi L V5,
A; C Vi, and A = A; UAy. (Hint: Use String Condition)

Moreover, the decomposition of A =| | A; into indecomposable sets corresponds to decomposition
of the root system in the orthogonal direct sum of indecomposable root systems.

Proof. For the first direction, suppose we have a decomposition A = Ay UA9, A; CV,,a € A, B €
Ay. Therefore, a + 3 ¢ AU {0}, hence ¢ = 0. As well, clearly —a € Ay, so p = 0. Therefore,
> = (), hence (a, = 0. Let V; = span(4;), then by above V; 2, and thus V =V @ Vs.

208 _ B) = 0. Let V; A;), then by above V; L Vs, and thus V = V; @ V;

(o)

On the other hand, suppose V = V; & V5, V7 L V5. Choose A; = ANV;. We show Ay U Ay is
a decomposition. In the contrary case, choose a € A;,3 € Ay and suppose a + 3 € A U {0}.
Then, o + 3 # 0 since (o, —a) # 0, so a + 5 € A. Without loss of generality, « + 5 € A; C Vi, as
B €Ny CVaand Vi L Vo, we have 0 = (a+,5) = (o, B)+ (5, 3) = (B, 5). This is a contradiction,
hence a + 3 ¢ A, so we have a decomposition.

By the above argument, it is clear that the decomposition into indecomposables corresponds to the
orthogonal decomposition with respect to (-, ).

O



