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Exercise 11.1. Let g be a Lie algebra. Then

1. if a, b ⊂ g are ideals, then a + b and a ∩ b are ideals, and if a and b are solvable then
a + b and a ∩ b are solvable.

2. If a ⊂ g is an ideal and b ⊂ g is a subalgebra, then a + b is a subalgebra

Solution:

Let x ∈ g, a ∈ a, b ∈ b. Then [x, a+ b] = [x, a] + [x, b] ∈ a+ b since a, b are ideals. Similarly,
if y ∈ a ∩ b then [x, y] ∈ a, [x, y] ∈ b, so a ∩ b is an ideal too.

By an easy induction, (a ∩ b)(i) ⊂ a(i), which is eventually zero if a is solvable, so a ∩ b is
solvable.

We showed earlier (in lecture 4) that if h ⊂ g and both h, g/h are solvable, then g is solvable.
Consider (a + b)/b. By hypothesis, b is solvable. Noether’s Third Isomorphism Theorem
shows (a + b)/b ∼= a/(a ∩ b) (more explicitly, look at the homomorphisms a → a + b and
a + b → (a + b)/b, notice that the kernel of their composition is exactly a ∩ b). Since a is
solvable, a/(a ∩ b) is solvable. Hence a + b is solvable.

For part 2, given any a1, a2 ∈ a and b1, b2 ∈ b, [a1 + b1, a2 + b2] = [a1, a2] + [b1, a2] + [a1, b2] +
[b1, b2]. Notice the sum of the first three terms is in a since it is an ideal, and the last term
is in b since it is a subalgebra, thus the entire sum is in a + b. The closure of a + b under
addition and scalar multiplication is obvious. Thus the statement is proven.

Definition 11.1. A radical R(g) of a finite-dimensional Lie algebra g is a solvable ideal of
g of maximal possible dimension.

Proposition 11.1. The radical of g contains any solvable ideal of g and is unique.

Proof. If a is a solvable ideal of g, then a + R(g) is again a solvable ideal. Since R(g) is of
maximal dimension, a+R(g) = R(g) and a ⊂ R(g). For uniqueness, if there are two distinct
maximal dimensional solvable ideals of g, then by above explanation, the sum is actually
equal to both ideals. Thus we have a contradiction.

If g is a finite dimensional solvable Lie algebra, then R(g) = g. The opposite case is when
R(g) = 0.

Definition 11.2. A finite dimensional Lie algebra g is called semisimple if R(g) = 0.
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Proposition 11.2. A finite dimensional Lie algebra g is semisimple if and only if either of
the following two conditions holds:

1. Any solvable ideal of g is 0.

2. Any abelian ideal of g is 0.

Proof. The first condition is obviously equivalent to semisimplicity.

Suppose that g contains a non-zero solvable ideal r. For some k, we have

r ⊃ r(1) ⊃ r(2) ⊃ · · · ) r(k) = 0,

hence r(k−1) is a nonzero abelian ideal, since all the r(i) are ideals of g. Abelian ideals are
solvable, so the other direction is obvious.

Remark 11.1. Let g be a finite dimensional Lie algebra and R(g) its radical. Then g/R(g)
is a semisimple Lie algebra. Indeed, if g/R(g) contains a non-zero solvable ideal f, then its
preimage r contains R(g) properly, so that r/R(g) ∼= f, which is solvable, hence r is a larger
solvable ideal than R(g), a contradiction.

So an arbitary finite dimensional Lie algebra “reduces” to a solvable Lie algebra R(g) and a
semisimple Lie algebra g/R(g).

In the case char F = 0 a stronger result holds:

Theorem 11.1. (Levi decomposition) If g is a finite dimensional Lie algebra over a field F
of characteristic 0, then there exists a semisimple subalgebra s ⊂ g, complementary to the
radical R(g), such that g = s⊕R(g) as vector spaces.

Definition 11.3. A decomposition g = h ⊕ r (direct sum of vector spaces), where h is a
subalgebra and r is an ideal is called a semi-direct sum of h and r and is denoted by g = hnr.
The special case when h is an ideal as well corresponds to the direct sum: g = h× r = h⊕ r.

Remark 11.2. The open end of n goes on the side of the ideal. When both are ideals, we
use × or ⊕, and the sum is direct.

Exercise 11.2. Let h and r be Lie algebras and let γ : h → Der(r) be a Lie algebra homo-
morphism. Let g = h⊕ r be the direct sum of vector spaces and extend the bracket on h and
on r to the whole of g by letting

[h, r] = −[r, h] = γ(h)(r)

for h ∈ h and r ∈ r. Show that this provides g with a Lie algebra structure, g = h n r, and
that any semidirect sum of h and r is obtained in this way. Finally, show that g = h × r if
and only if γ = 0.
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Solution:

The bracket so defined is clearly skew-symmetric. Restricted to h or r it satisfies the Ja-
cobi identity. Take h1, h2 ∈ h and r1, r2 ∈ r. Then we have [h1, [r1, r2]] + [r1, [r2, h1]] +
[r2, [h1, r1]] = γ(h1)([r1, r2])−[r1, γ(h1)(r2)]+[r2, γ(h1)(r1)] = [γ(h1)(r1), r2]+[r1, γ(h1)(r2)]−
[r1, γ(h1)(r2)] + [r2, γ(h1)(r1)] = 0. We used the fact that γ(h1) is a derivation.

Furthermore, [h1, [h2, r1]] + [h2, [r1, h1]] + [r1, [h1, h2]] = [h1, γ(h2)(r1)] − [h2, γ(h1)(r1)] −
γ([h1, h2])(r1) = γ(h1)γ(h2)(r1) − γ(h2)γ(h1)(r1) − (γ(h1)γ(h2)(r1) − γ(h2)γ(h1)(r1)) = 0.
We used the fact that γ : h → Der(r) is a Lie algebra homomorphism. It follows that [, ] is
a Lie bracket. Clearly r is an ideal under the bracket, so g = hn r.

Conversely, by the Jacobi identity, any bracket on hn r is a homomorphism from h to Der(r)
(essentially we just reverse the two calculations above). Finally, if γ = 0 then [h, r] = 0 for
all h ∈ h, r ∈ r, and if [h, r] = 0 for all h, r then plainly γ(h) = 0 for all h, so g = h × r if
and only if γ = 0.

Exercise 11.3. Let g ⊂ gln(F) be a subspace consisting of matrices with arbitrary first m
rows and 0 for the rest of the rows. Find R(g) and a Levi decomposition of g.

Solution:

Write x ∈ g as (A,B), where A is the upper-left m×m matrix block and B is the upper-right
m× (n−m) block of x. Take y = (A′, B′). Then it is clear that [x, y] = ([A,A′], AB′−A′B).
Hence, if h ⊂ glm ↪→ g is an ideal of glm, then (h, 0) + R is an ideal of g, where R denotes
the set of all (A,B) with A = 0. Furthermore, h is solvable if and only if h + R is solvable,
because of [R,R] = 0 and the above identity. Notice that the radical of g obviously contains
R. Hence, the radical of g corresponds to the radical of glm, i.e. R(g) = (R(glm), 0) + R.
But, by the notes and problem 4 below, the radical of glm is FI, the scalar matrices. Hence
R(g) = (FI, 0) +R (sum of ideals). The complement of this can obviously be the subalgebra
(slm, 0).

Theorem 11.2. Let V be a finite-dimensional vector space over an algebraically closed field
of characteristic 0 and let g ⊂ glV be a subalgebra, which is irreducible i.e. any subspace
U ⊂ V , which is g−invariant, is either 0 or V . Then one of two possibilities hold:

1. g is semisimple

2. g = (g ∩ slV )⊕ FI and g ∩ slV is semisimple.

Proof. If g is not semisimple, then R(g) is a non-zero solvable ideal in g. By Lie’s theorem,
there exists λ ∈ R(g)∗ such that Vλ = {v ∈ V |av = λ(a)v, a ∈ R(g)} is nonzero. By Lie’s
lemma, Vλ is invariant. Hence, by irreducibility Vλ = V . Hence a = λ(a)IV for all a ∈ R(g),
so R(g) = FI. Hence (g ∩ slV ) ∩ R(g) = 0, which proves that we have case 2, as g ∩ slV is
semisimple since it is the complement of the radical.
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Exercise 11.4. Let V be finite-dimensional over a field F which is algebraically closed and
characteristic 0. Show that glV and slV are irreducible subalgebras of glV . Deduce that slV
is semisimple.

Solution: Suppose W ⊂ V,W 6= 0 is fixed by sln. Take nonzero vector w =
∑
civi ∈ W ,

where {vi} is a basis of V . Suppose ck 6= 0, and pick ` 6= k. Then e`k ∈ sln, and
e`kw = cke` ∈ W . For every m 6= `, em` ∈ sln, so em`e` = em ∈ W . Hence W = V .
Since sln ⊂ gln, gln is also irreducible. It follows from the theorem that sln ∩ sln = sln is
semisimple.

Let g be a finite-dimensional Lie algebra. Recall the Killing form on g: K(a, b) = trg(ad a)(ad b).

Theorem 11.3. Let g be a finite-dimensional Lie algebra over a field of characteristic 0.
Then the Killing form on g is non-degenerate if and only if g is semisimple. Moreover, if g
is semisimple and a ⊂ g is an ideal, then the restriction of the Killing form to a, K|a×a, is
also non-degenerate and coincides with the Killing form of a.

Exercise 11.5. Let V be a finite-dimensional vector space with a symmetric bilinear form
(, ). Let U be a subspace such that the restriction (, )|U×U is non-degenerate. Denote U⊥ =
{v ∈ V |(v, U) = 0}. Then V = U ⊕ U⊥.

Solution: We pick an arbitrary basis u1, ..., um of U, and then extend it to a basis of V:
u1, ..., um, ..., un. Let the matrix associated with the given bilinear form relative to this basis

be Q =

(
A B
BT C

)
, where A is an m ×m invertible matrix. We want to change the basis

(more specifically, the part um+1, ..., un to u′m+1, ..., u
′
n) to make part B vanish. Suppose that

the base change matrix is P =

(
1 X
0 1

)
, where the sizes of the blocks match that of Q. Then

the new matrix associated to the bilinear form is P TQP =

(
1 0
XT 1

)(
A B
BT C

)(
1 X
0 1

)
=(

A AX +B
XTA+BT ∗

)
. Thus we can just take X = −A−1B and the new matrix will have

zero upper right block. It is obvious now that we have the desired decomposition by noticing
that U⊥ equals span of um+1, ..., un.

Lemma 11.1. Let g be a finite-dimensional Lie algebra and (, ) be a symmetric invariant
bilinear form on g. Then

1. If a ⊂ g is an ideal, then a⊥ is also an ideal.

2. If (, )|a×a is non-degenerate, then g = a⊕ a⊥, a direct sum of Lie algebras.

Proof. 1. v ∈ a⊥ means (v, a) = 0. If b ∈ g, then ([v, b], a) = (v, [b, a]) = 0, since the form
is invariant and a is an ideal. Hence a⊥ is an ideal.
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2. Follows from the preceeding exercise and part 1.

Proof of the theorem. Suppose K is non-degenerate on g, but g is not semisimple. Hence
there exists an abelian ideal a ⊂ g. But then K(a, g) = 0, contradicting non-degeneracy of
K. Indeed, if x ∈ g and y ∈ a, then (ad x)(ad y)z = [x, [y, z]] ∈ a for all z ∈ g (and 0 for all
z ∈ a. If follows that in the basis e1, . . . , ek of a, e1, . . . , ek, ek+1, . . . , en basis of g, the matrix

of (ad x)(ad y) is of the form

(
0 ∗
0 0

)
. But trace of this matrix is 0, so K(x, y) = 0.

Conversely, let g be semisimple. Let a be an ideal of g. If Ka×a is degenerate, so that
a ∩ a⊥ 6= 0, hence b = a ∩ a⊥ is an ideal of g such that K(b, b) = 0. By considering the
adjoing representation of b in g and applying the Cartan criterion we conclude that b is
solvable. Since g is semisimple, we deduce that b = 0. Thus if g is semisimple, the Killing
form is non-degenerate, by taking a = g.

As for the second part, we already proved that K|a×a is non-degenerate. Hence g = a⊕ a⊥.
By lemma it is a direct sum of ideals, so [a, a⊥] = 0. Hence K for a equals K of g restricted
to a.

Definition 11.4. A Lie algebra g is called simple if its only ideals are 0 and g and g is not
abelian.

Corollary 11.1. Any semisimple, finite-dimensional Lie algebra over a field F of charac-
teristic 0 is a direct sum of simple Lie algebras.

Proof. If g is semisimple, but not simple, and if a is an ideal, then by the theorem, the
Killing form restricted to a is non-degenerate, hence g = a ⊕ a⊥, where a and a⊥ are also
semisimple. After finitely many steps it can be decomposed into simple algebras.
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