18.745 Introduction to Lie Algebras		October 14, 2010
Lecture 11 — The Radical and Semisimple Lie Algebras		
Prof. Victor Kac	Scribe: Scott Ke	ovach and Qinxuan Pan

Exercise 11.1. Let \mathfrak{g} be a Lie algebra. Then

- 1. *if* $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$ are ideals, then $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ are ideals, and if \mathfrak{a} and \mathfrak{b} are solvable then $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ are solvable.
- 2. If $\mathfrak{a} \subset \mathfrak{g}$ is an ideal and $b \subset \mathfrak{g}$ is a subalgebra, then $\mathfrak{a} + \mathfrak{b}$ is a subalgebra

Solution:

Let $x \in \mathfrak{g}, a \in \mathfrak{a}, b \in \mathfrak{b}$. Then $[x, a+b] = [x, a] + [x, b] \in \mathfrak{a} + \mathfrak{b}$ since $\mathfrak{a}, \mathfrak{b}$ are ideals. Similarly, if $y \in \mathfrak{a} \cap \mathfrak{b}$ then $[x, y] \in \mathfrak{a}, [x, y] \in \mathfrak{b}$, so $\mathfrak{a} \cap \mathfrak{b}$ is an ideal too.

By an easy induction, $(\mathfrak{a} \cap \mathfrak{b})^{(i)} \subset \mathfrak{a}^{(i)}$, which is eventually zero if \mathfrak{a} is solvable, so $\mathfrak{a} \cap \mathfrak{b}$ is solvable.

We showed earlier (in lecture 4) that if $\mathfrak{h} \subset \mathfrak{g}$ and both $\mathfrak{h}, \mathfrak{g}/\mathfrak{h}$ are solvable, then \mathfrak{g} is solvable. Consider $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b}$. By hypothesis, \mathfrak{b} is solvable. Noether's Third Isomorphism Theorem shows $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b} \cong \mathfrak{a}/(\mathfrak{a} \cap \mathfrak{b})$ (more explicitly, look at the homomorphisms $\mathfrak{a} \to \mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} + \mathfrak{b} \to (\mathfrak{a} + \mathfrak{b})/\mathfrak{b}$, notice that the kernel of their composition is exactly $\mathfrak{a} \cap \mathfrak{b}$). Since \mathfrak{a} is solvable, $\mathfrak{a}/(\mathfrak{a} \cap \mathfrak{b})$ is solvable. Hence $\mathfrak{a} + \mathfrak{b}$ is solvable.

For part 2, given any $a_1, a_2 \in \mathfrak{a}$ and $b_1, b_2 \in \mathfrak{b}$, $[a_1 + b_1, a_2 + b_2] = [a_1, a_2] + [b_1, a_2] + [a_1, b_2] + [b_1, b_2]$. Notice the sum of the first three terms is in \mathfrak{a} since it is an ideal, and the last term is in \mathfrak{b} since it is a subalgebra, thus the entire sum is in $\mathfrak{a} + \mathfrak{b}$. The closure of $\mathfrak{a} + \mathfrak{b}$ under addition and scalar multiplication is obvious. Thus the statement is proven.

Definition 11.1. A radical $R(\mathfrak{g})$ of a finite-dimensional Lie algebra \mathfrak{g} is a solvable ideal of \mathfrak{g} of maximal possible dimension.

Proposition 11.1. The radical of \mathfrak{g} contains any solvable ideal of \mathfrak{g} and is unique.

Proof. If \mathfrak{a} is a solvable ideal of \mathfrak{g} , then $\mathfrak{a} + R(\mathfrak{g})$ is again a solvable ideal. Since $R(\mathfrak{g})$ is of maximal dimension, $\mathfrak{a} + R(\mathfrak{g}) = R(\mathfrak{g})$ and $\mathfrak{a} \subset R(\mathfrak{g})$. For uniqueness, if there are two distinct maximal dimensional solvable ideals of \mathfrak{g} , then by above explanation, the sum is actually equal to both ideals. Thus we have a contradiction.

If \mathfrak{g} is a finite dimensional solvable Lie algebra, then $R(\mathfrak{g}) = \mathfrak{g}$. The opposite case is when $R(\mathfrak{g}) = 0$.

Definition 11.2. A finite dimensional Lie algebra \mathfrak{g} is called semisimple if $R(\mathfrak{g}) = 0$.

Proposition 11.2. A finite dimensional Lie algebra \mathfrak{g} is semisimple if and only if either of the following two conditions holds:

- 1. Any solvable ideal of \mathfrak{g} is 0.
- 2. Any abelian ideal of \mathfrak{g} is 0.

Proof. The first condition is obviously equivalent to semisimplicity.

Suppose that \mathfrak{g} contains a non-zero solvable ideal \mathfrak{r} . For some k, we have

$$\mathfrak{r} \supset \mathfrak{r}^{(1)} \supset \mathfrak{r}^{(2)} \supset \cdots \supseteq \mathfrak{r}^{(k)} = 0,$$

hence $\mathfrak{r}^{(k-1)}$ is a nonzero abelian ideal, since all the $\mathfrak{r}^{(i)}$ are ideals of \mathfrak{g} . Abelian ideals are solvable, so the other direction is obvious.

Remark 11.1. Let \mathfrak{g} be a finite dimensional Lie algebra and $R(\mathfrak{g})$ its radical. Then $\mathfrak{g}/R(\mathfrak{g})$ is a semisimple Lie algebra. Indeed, if $\mathfrak{g}/R(\mathfrak{g})$ contains a non-zero solvable ideal \mathfrak{f} , then its preimage \mathfrak{r} contains $R(\mathfrak{g})$ properly, so that $\mathfrak{r}/R(\mathfrak{g}) \cong \mathfrak{f}$, which is solvable, hence \mathfrak{r} is a larger solvable ideal than $R(\mathfrak{g})$, a contradiction.

So an arbitrary finite dimensional Lie algebra "reduces" to a solvable Lie algebra $R(\mathfrak{g})$ and a semisimple Lie algebra $\mathfrak{g}/R(\mathfrak{g})$.

In the case char $\mathbb{F} = 0$ a stronger result holds:

Theorem 11.1. (Levi decomposition) If \mathfrak{g} is a finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0, then there exists a semisimple subalgebra $\mathfrak{s} \subset \mathfrak{g}$, complementary to the radical $R(\mathfrak{g})$, such that $\mathfrak{g} = \mathfrak{s} \oplus R(\mathfrak{g})$ as vector spaces.

Definition 11.3. A decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{r}$ (direct sum of vector spaces), where \mathfrak{h} is a subalgebra and \mathfrak{r} is an ideal is called a semi-direct sum of \mathfrak{h} and \mathfrak{r} and is denoted by $\mathfrak{g} = \mathfrak{h} \ltimes \mathfrak{r}$. The special case when \mathfrak{h} is an ideal as well corresponds to the direct sum: $\mathfrak{g} = \mathfrak{h} \times \mathfrak{r} = \mathfrak{h} \oplus \mathfrak{r}$.

Remark 11.2. The open end of \ltimes goes on the side of the ideal. When both are ideals, we use \times or \oplus , and the sum is direct.

Exercise 11.2. Let \mathfrak{h} and \mathfrak{r} be Lie algebras and let $\gamma : \mathfrak{h} \to \text{Der}(\mathfrak{r})$ be a Lie algebra homomorphism. Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{r}$ be the direct sum of vector spaces and extend the bracket on \mathfrak{h} and on \mathfrak{r} to the whole of \mathfrak{g} by letting

$$[h,r] = -[r,h] = \gamma(h)(r)$$

for $h \in \mathfrak{h}$ and $r \in \mathfrak{r}$. Show that this provides \mathfrak{g} with a Lie algebra structure, $\mathfrak{g} = \mathfrak{h} \ltimes \mathfrak{r}$, and that any semidirect sum of \mathfrak{h} and \mathfrak{r} is obtained in this way. Finally, show that $\mathfrak{g} = \mathfrak{h} \times \mathfrak{r}$ if and only if $\gamma = 0$.

Solution:

The bracket so defined is clearly skew-symmetric. Restricted to \mathfrak{h} or \mathfrak{r} it satisfies the Jacobi identity. Take $h_1, h_2 \in \mathfrak{h}$ and $r_1, r_2 \in \mathfrak{r}$. Then we have $[h_1, [r_1, r_2]] + [r_1, [r_2, h_1]] + [r_2, [h_1, r_1]] = \gamma(h_1)([r_1, r_2]) - [r_1, \gamma(h_1)(r_2)] + [r_2, \gamma(h_1)(r_1)] = [\gamma(h_1)(r_1), r_2] + [r_1, \gamma(h_1)(r_2)] - [r_1, \gamma(h_1)(r_2)] + [r_2, \gamma(h_1)(r_1)] = 0$. We used the fact that $\gamma(h_1)$ is a derivation.

Furthermore, $[h_1, [h_2, r_1]] + [h_2, [r_1, h_1]] + [r_1, [h_1, h_2]] = [h_1, \gamma(h_2)(r_1)] - [h_2, \gamma(h_1)(r_1)] - \gamma([h_1, h_2])(r_1) = \gamma(h_1)\gamma(h_2)(r_1) - \gamma(h_2)\gamma(h_1)(r_1) - (\gamma(h_1)\gamma(h_2)(r_1) - \gamma(h_2)\gamma(h_1)(r_1)) = 0.$ We used the fact that $\gamma : \mathfrak{h} \to \operatorname{Der}(\mathfrak{r})$ is a Lie algebra homomorphism. It follows that [,] is a Lie bracket. Clearly \mathfrak{r} is an ideal under the bracket, so $\mathfrak{g} = \mathfrak{h} \ltimes \mathfrak{r}$.

Conversely, by the Jacobi identity, any bracket on $\mathfrak{h} \ltimes \mathfrak{r}$ is a homomorphism from \mathfrak{h} to $\text{Der}(\mathfrak{r})$ (essentially we just reverse the two calculations above). Finally, if $\gamma = 0$ then [h, r] = 0 for all $h \in \mathfrak{h}, r \in \mathfrak{r}$, and if [h, r] = 0 for all h, r then plainly $\gamma(h) = 0$ for all h, so $\mathfrak{g} = \mathfrak{h} \times \mathfrak{r}$ if and only if $\gamma = 0$.

Exercise 11.3. Let $\mathfrak{g} \subset gl_n(\mathbb{F})$ be a subspace consisting of matrices with arbitrary first m rows and 0 for the rest of the rows. Find $R(\mathfrak{g})$ and a Levi decomposition of \mathfrak{g} .

Solution:

Write $x \in \mathfrak{g}$ as (A, B), where A is the upper-left $m \times m$ matrix block and B is the upper-right $m \times (n-m)$ block of x. Take y = (A', B'). Then it is clear that [x, y] = ([A, A'], AB' - A'B). Hence, if $\mathfrak{h} \subset gl_m \hookrightarrow \mathfrak{g}$ is an ideal of \mathfrak{gl}_m , then $(\mathfrak{h}, 0) + R$ is an ideal of \mathfrak{g} , where R denotes the set of all (A, B) with A = 0. Furthermore, \mathfrak{h} is solvable if and only if $\mathfrak{h} + R$ is solvable, because of [R, R] = 0 and the above identity. Notice that the radical of \mathfrak{g} obviously contains R. Hence, the radical of \mathfrak{g} corresponds to the radical of \mathfrak{gl}_m , i.e. $R(\mathfrak{g}) = (R(\mathfrak{gl}_m), 0) + R$. But, by the notes and problem 4 below, the radical of gl_m is $\mathbb{F}I$, the scalar matrices. Hence $R(\mathfrak{g}) = (\mathbb{F}I, 0) + R$ (sum of ideals). The complement of this can obviously be the subalgebra $(\mathfrak{sl}_m, 0)$.

Theorem 11.2. Let V be a finite-dimensional vector space over an algebraically closed field of characteristic 0 and let $\mathfrak{g} \subset \mathfrak{gl}_V$ be a subalgebra, which is irreducible i.e. any subspace $U \subset V$, which is \mathfrak{g} -invariant, is either 0 or V. Then one of two possibilities hold:

- 1. \mathfrak{g} is semisimple
- 2. $\mathfrak{g} = (\mathfrak{g} \cap \mathfrak{sl}_V) \oplus \mathbb{F}I$ and $\mathfrak{g} \cap \mathfrak{sl}_V$ is semisimple.

Proof. If \mathfrak{g} is not semisimple, then $R(\mathfrak{g})$ is a non-zero solvable ideal in \mathfrak{g} . By Lie's theorem, there exists $\lambda \in R(\mathfrak{g})^*$ such that $V_{\lambda} = \{v \in V | av = \lambda(a)v, a \in R(\mathfrak{g})\}$ is nonzero. By Lie's lemma, V_{λ} is invariant. Hence, by irreducibility $V_{\lambda} = V$. Hence $a = \lambda(a)I_V$ for all $a \in R(\mathfrak{g})$, so $R(\mathfrak{g}) = \mathbb{F}I$. Hence $(\mathfrak{g} \cap \mathfrak{sl}_V) \cap R(\mathfrak{g}) = 0$, which proves that we have case 2, as $\mathfrak{g} \cap \mathfrak{sl}_V$ is semisimple since it is the complement of the radical.

Exercise 11.4. Let V be finite-dimensional over a field \mathbb{F} which is algebraically closed and characteristic 0. Show that \mathfrak{gl}_V and \mathfrak{sl}_V are irreducible subalgebras of \mathfrak{gl}_V . Deduce that \mathfrak{sl}_V is semisimple.

Solution: Suppose $W \subset V, W \neq 0$ is fixed by \mathfrak{sl}_n . Take nonzero vector $w = \sum c_i v_i \in W$, where $\{v_i\}$ is a basis of V. Suppose $c_k \neq 0$, and pick $\ell \neq k$. Then $e_{\ell k} \in \mathfrak{sl}_n$, and $e_{\ell k}w = c_k e_\ell \in W$. For every $m \neq \ell, e_{m\ell} \in \mathfrak{sl}_n$, so $e_{m\ell} e_\ell = e_m \in W$. Hence W = V. Since $\mathfrak{sl}_n \subset \mathfrak{gl}_n$, \mathfrak{gl}_n is also irreducible. It follows from the theorem that $\mathfrak{sl}_n \cap \mathfrak{sl}_n = \mathfrak{sl}_n$ is semisimple.

Let \mathfrak{g} be a finite-dimensional Lie algebra. Recall the Killing form on \mathfrak{g} : $K(a, b) = \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} a)(\operatorname{ad} b)$.

Theorem 11.3. Let \mathfrak{g} be a finite-dimensional Lie algebra over a field of characteristic 0. Then the Killing form on \mathfrak{g} is non-degenerate if and only if \mathfrak{g} is semisimple. Moreover, if \mathfrak{g} is semisimple and $\mathfrak{a} \subset \mathfrak{g}$ is an ideal, then the restriction of the Killing form to $\mathfrak{a}, K|_{\mathfrak{a}\times\mathfrak{a}}$, is also non-degenerate and coincides with the Killing form of \mathfrak{a} .

Exercise 11.5. Let V be a finite-dimensional vector space with a symmetric bilinear form (,). Let U be a subspace such that the restriction (,) $|_{U \times U}$ is non-degenerate. Denote $U^{\perp} = \{v \in V | (v, U) = 0\}$. Then $V = U \oplus U^{\perp}$.

Solution: We pick an arbitrary basis $u_1, ..., u_m$ of U, and then extend it to a basis of V: $u_1, ..., u_m, ..., u_n$. Let the matrix associated with the given bilinear form relative to this basis be $Q = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$, where A is an $m \times m$ invertible matrix. We want to change the basis (more specifically, the part $u_{m+1}, ..., u_n$ to $u'_{m+1}, ..., u'_n$) to make part B vanish. Suppose that the base change matrix is $P = \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}$, where the sizes of the blocks match that of Q. Then the new matrix associated to the bilinear form is $P^TQP = \begin{pmatrix} 1 & 0 \\ X^T & 1 \end{pmatrix} \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} A & AX + B \\ X^TA + B^T & * \end{pmatrix}$. Thus we can just take $X = -A^{-1}B$ and the new matrix will have zero upper right block. It is obvious now that we have the desired decomposition by noticing that U^{\perp} equals span of $u_{m+1}, ..., u_n$.

Lemma 11.1. Let \mathfrak{g} be a finite-dimensional Lie algebra and (,) be a symmetric invariant bilinear form on \mathfrak{g} . Then

- 1. If $\mathfrak{a} \subset \mathfrak{g}$ is an ideal, then \mathfrak{a}^{\perp} is also an ideal.
- 2. If $(,)|_{\mathfrak{a}\times\mathfrak{a}}$ is non-degenerate, then $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$, a direct sum of Lie algebras.
- *Proof.* 1. $v \in \mathfrak{a}^{\perp}$ means $(v, \mathfrak{a}) = 0$. If $b \in \mathfrak{g}$, then $([v, b], \mathfrak{a}) = (v, [b, \mathfrak{a}]) = 0$, since the form is invariant and \mathfrak{a} is an ideal. Hence \mathfrak{a}^{\perp} is an ideal.

2. Follows from the preceeding exercise and part 1.

Proof of the theorem. Suppose K is non-degenerate on \mathfrak{g} , but \mathfrak{g} is not semisimple. Hence there exists an abelian ideal $\mathfrak{a} \subset \mathfrak{g}$. But then $K(\mathfrak{a}, \mathfrak{g}) = 0$, contradicting non-degeneracy of K. Indeed, if $x \in \mathfrak{g}$ and $y \in \mathfrak{a}$, then $(\operatorname{ad} x)(\operatorname{ad} y)z = [x, [y, z]] \in \mathfrak{a}$ for all $z \in \mathfrak{g}$ (and 0 for all $z \in \mathfrak{a}$. If follows that in the basis e_1, \ldots, e_k of $\mathfrak{a}, e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ basis of \mathfrak{g} , the matrix of $(\operatorname{ad} x)(\operatorname{ad} y)$ is of the form $\begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$. But trace of this matrix is 0, so K(x, y) = 0.

Conversely, let \mathfrak{g} be semisimple. Let \mathfrak{a} be an ideal of \mathfrak{g} . If $K_{\mathfrak{a}\times\mathfrak{a}}$ is degenerate, so that $\mathfrak{a}\cap\mathfrak{a}^{\perp}\neq 0$, hence $\mathfrak{b}=\mathfrak{a}\cap\mathfrak{a}^{\perp}$ is an ideal of \mathfrak{g} such that $K(\mathfrak{b},\mathfrak{b})=0$. By considering the adjoing representation of \mathfrak{b} in \mathfrak{g} and applying the Cartan criterion we conclude that \mathfrak{b} is solvable. Since \mathfrak{g} is semisimple, we deduce that $\mathfrak{b}=0$. Thus if \mathfrak{g} is semisimple, the Killing form is non-degenerate, by taking $\mathfrak{a}=\mathfrak{g}$.

As for the second part, we already proved that $K|_{\mathfrak{a}\times\mathfrak{a}}$ is non-degenerate. Hence $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$. By lemma it is a direct sum of ideals, so $[\mathfrak{a}, \mathfrak{a}^{\perp}] = 0$. Hence K for \mathfrak{a} equals K of \mathfrak{g} restricted to \mathfrak{a} .

Definition 11.4. A Lie algebra \mathfrak{g} is called simple if its only ideals are 0 and \mathfrak{g} and \mathfrak{g} is not abelian.

Corollary 11.1. Any semisimple, finite-dimensional Lie algebra over a field \mathbb{F} of characteristic 0 is a direct sum of simple Lie algebras.

Proof. If \mathfrak{g} is semisimple, but not simple, and if \mathfrak{a} is an ideal, then by the theorem, the Killing form restricted to \mathfrak{a} is non-degenerate, hence $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$, where \mathfrak{a} and \mathfrak{a}^{\perp} are also semisimple. After finitely many steps it can be decomposed into simple algebras. \Box