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Exercise 11.1. Let g be a Lie algebra. Then

1. if a,b C g are ideals, then a+ b and a N b are ideals, and if a and b are solvable then
a+b and anb are solvable.

2. If a C g is an ideal and b C g is a subalgebra, then a + b is a subalgebra

Solution:

Let x € g,a € a,b € b. Then [z,a+b] = [x,a] + [z,b] € a+ b since a, b are ideals. Similarly,
if y € anb then [x,y] € a,[z,y] € b, so aN b is an ideal too.

By an easy induction, (a N b)® C a®, which is eventually zero if a is solvable, so a N b is
solvable.

We showed earlier (in lecture 4) that if h C g and both b, g/h are solvable, then g is solvable.
Consider (a 4+ b)/b. By hypothesis, b is solvable. Noether’s Third Isomorphism Theorem
shows (a + b)/b = a/(anNb) (more explicitly, look at the homomorphisms a — a + b and
a+b — (a+ b)/b, notice that the kernel of their composition is exactly a N b). Since a is
solvable, a/(a N b) is solvable. Hence a 4 b is solvable.

For part 2, given any aq,as € a and by, by € b, [ay + by, as + bo] = [ay, as] + [b1, az] + [a1, bs] +
[b1, bs]. Notice the sum of the first three terms is in a since it is an ideal, and the last term
is in b since it is a subalgebra, thus the entire sum is in a + b. The closure of a + b under
addition and scalar multiplication is obvious. Thus the statement is proven.

Definition 11.1. A radical R(g) of a finite-dimensional Lie algebra g is a solvable ideal of
g of maximal possible dimension.

Proposition 11.1. The radical of g contains any solvable ideal of g and is unique.

Proof. 1f a is a solvable ideal of g, then a + R(g) is again a solvable ideal. Since R(g) is of
maximal dimension, a+ R(g) = R(g) and a C R(g). For uniqueness, if there are two distinct
maximal dimensional solvable ideals of g, then by above explanation, the sum is actually
equal to both ideals. Thus we have a contradiction. O

If g is a finite dimensional solvable Lie algebra, then R(g) = g. The opposite case is when
R(g) =0.

Definition 11.2. A finite dimensional Lie algebra g is called semisimple if R(g) = 0.



Proposition 11.2. A finite dimensional Lie algebra g is semisimple if and only if either of
the following two conditions holds:

1. Any solvable ideal of g is 0.

2. Any abelian ideal of g is 0.

Proof. The first condition is obviously equivalent to semisimplicity.
Suppose that g contains a non-zero solvable ideal r. For some k, we have

hence t*~1 is a nonzero abelian ideal, since all the ¢V are ideals of g. Abelian ideals are

solvable, so the other direction is obvious. O

Remark 11.1. Let g be a finite dimensional Lie algebra and R(g) its radical. Then g/R(g)
is a semisimple Lie algebra. Indeed, if g/R(g) contains a non-zero solvable ideal f, then its
preimage ¢ contains R(g) properly, so that t/R(g) = f, which is solvable, hence ¢ is a larger
solvable ideal than R(g), a contradiction.

So an arbitary finite dimensional Lie algebra “reduces” to a solvable Lie algebra R(g) and a
semisimple Lie algebra g/ R(g).

In the case char F = 0 a stronger result holds:

Theorem 11.1. (Levi decomposition) If g is a finite dimensional Lie algebra over a field F
of characteristic 0, then there exists a semisimple subalgebra s C g, complementary to the
radical R(g), such that g = s @® R(g) as vector spaces.

Definition 11.3. A decomposition g = h @ v (direct sum of vector spaces), where by is a
subalgebra and ¢ is an ideal is called a semi-direct sum of b and v and is denoted by g = hx ¢.
The special case when b is an ideal as well corresponds to the direct sum: g=h xet=0hDr.

Remark 11.2. The open end of X goes on the side of the ideal. When both are ideals, we
use X or @, and the sum is direct.

Exercise 11.2. Let b and v be Lie algebras and let vy : h — Der(t) be a Lie algebra homo-
morphism. Let g = b @t be the direct sum of vector spaces and extend the bracket on b and
on t to the whole of g by letting

[h7 T] = _[Ta h] = ’V(h) (T)

for h € b and r € v. Show that this provides g with a Lie algebra structure, g = bh x ¢, and
that any semidirect sum of b and ¢ is obtained in this way. Finally, show that g = h x v if
and only if v = 0.



Solution:

The bracket so defined is clearly skew-symmetric. Restricted to b or v it satisfies the Ja-
cobi identity. Take hi,he € b and r1,79 € tv. Then we have [hy, [r1, r2]] + [r1, [r2, P1]] +

[ra, [ha, mi]] = y(ha)([r1, ma]) = [r1, v (Ra) (r2) ]+ [r2, v (ha) (r1)] = [v(ha)(r1), o]+ [0, y(ha) (1) =
(71, (h1)(r2)] + [r2, v(h1)(r1)] = 0. We used the fact that (k) is a derivation.

Furthermore, [hy, [he,71]] + [he, [r1, Pa]] + [r1, [P1, ha]] = [h1, Y(h2)(r1)] — [he, v(h1)(11)] —
V([ha, ha])(r1) = v(ha)y(h2)(r1) — v(h2)y(h1)(r1) — (Y(ha)7y(h2)(r1) — v(h2)y(h1)(r1)) = 0.
We used the fact that v : h — Der(t) is a Lie algebra homomorphism. It follows that [,] is
a Lie bracket. Clearly v is an ideal under the bracket, so g =6 x ¢.

Conversely, by the Jacobi identity, any bracket on b x t is a homomorphism from b to Der(t)
(essentially we just reverse the two calculations above). Finally, if v = 0 then [h,r] = 0 for
all h € h,r € v, and if [h,r] = 0 for all h,r then plainly (k) = 0 for all h, so g = b x v if
and only if v = 0.

Exercise 11.3. Let g C gl,(F) be a subspace consisting of matrices with arbitrary first m
rows and 0 for the rest of the rows. Find R(g) and a Levi decomposition of g.

Solution:

Write x € g as (A, B), where A is the upper-left m x m matrix block and B is the upper-right
m X (n—m) block of x. Take y = (A’, B’). Then it is clear that [z,y| = ([A, A’], AB'— A’B).
Hence, if h C gl,, — g is an ideal of gl,,, then (h,0) + R is an ideal of g, where R denotes
the set of all (A, B) with A = 0. Furthermore, b is solvable if and only if h + R is solvable,
because of [R, R| = 0 and the above identity. Notice that the radical of g obviously contains
R. Hence, the radical of g corresponds to the radical of gl,,, i.e. R(g) = (R(gl,,),0) + R.
But, by the notes and problem 4 below, the radical of gl,, is IF/, the scalar matrices. Hence
R(g) = (FI,0) + R (sum of ideals). The complement of this can obviously be the subalgebra

(s, 0).

Theorem 11.2. Let V be a finite-dimensional vector space over an algebraically closed field
of characteristic 0 and let g C gly, be a subalgebra, which is irreducible i.e. any subspace
U C V, which is g—invariant, is either 0 or V. Then one of two possibilities hold:

1. g is semisimple

2. g=(gNsly) ®FI and gNsly is semisimple.

Proof. Tf g is not semisimple, then R(g) is a non-zero solvable ideal in g. By Lie’s theorem,
there exists A € R(g)* such that V) = {v € V|av = Aa)v,a € R(g)} is nonzero. By Lie’s
lemma, V) is invariant. Hence, by irreducibility V\, = V. Hence a = A(a)ly for all a € R(g),
so R(g) = FI. Hence (g Nsly) N R(g) = 0, which proves that we have case 2, as g N sly is
semisimple since it is the complement of the radical.

]



Exercise 11.4. Let V' be finite-dimensional over a field F which is algebraically closed and
characteristic 0. Show that gly, and sly are irreducible subalgebras of gly,. Deduce that sl
18 semistmple.

Solution: Suppose W C V,W # 0 is fixed by sl,. Take nonzero vector w = > cv; € W,
where {v;} is a basis of V. Suppose ¢ # 0, and pick ¢ # k. Then ey € sl,, and
eqw = cpep € W. For every m # (e, € sl,, so ee, = €, € W. Hence W = V.
Since sl,, C gl,,, gl,, is also irreducible. It follows from the theorem that s, N sl, = sl is
semisimple.

Let g be a finite-dimensional Lie algebra. Recall the Killing form on g: K (a,b) = try(ad a)(ad b).

Theorem 11.3. Let g be a finite-dimensional Lie algebra over a field of characteristic 0.
Then the Killing form on g is non-degenerate if and only if g is semisimple. Moreover, if g
is semisimple and a C g is an ideal, then the restriction of the Killing form to a, K|qxq, s
also non-degenerate and coincides with the Killing form of a.

Exercise 11.5. Let V' be a finite-dimensional vector space with a symmetric bilinear form
(,). Let U be a subspace such that the restriction (,)|yxu is non-degenerate. Denote U+ =

{veVl|(v,U)=0}. ThenV =U ® U".

Solution: We pick an arbitrary basis uq, ..., u,, of U, and then extend it to a basis of V:
ULy oeey Upy, ---, Up. Let the matrix associated with the given bilinear form relative to this basis

A

B : : : . .
be @ = BT C’)’ where A is an m X m invertible matrix. We want to change the basis

(more specifically, the part w1, ..., u, to ul, 4, ..., u;,) to make part B vanish. Suppose that

“ey n

(1) )1( , where the sizes of the blocks match that of Q. Then
1 0 A B\ /(1 X
. . a7 . T _ _
the new matrix associated to the bilinear form is P* QP = (XT 1) (BT C) <O 1) =
( A AX+B

the base change matrix is P =

XTA 4 BT . Thus we can just take X = —A~!B and the new matrix will have

zero upper right block. It is obvious now that we have the desired decomposition by noticing
that U+ equals span of w1, ..., Uy.

Lemma 11.1. Let g be a finite-dimensional Lie algebra and (,) be a symmetric invariant
bilinear form on g. Then

1. If a C g is an ideal, then a* is also an ideal.

2. If (,)|axa i non-degenerate, then g = a ® a*, a direct sum of Lie algebras.

Proof. 1. v € at means (v,a) = 0. If b € g, then ([v,b],a) = (v,[b,a]) = 0, since the form
is invariant and a is an ideal. Hence at is an ideal.



2. Follows from the preceeding exercise and part 1.

]

Proof of the theorem. Suppose K is non-degenerate on g, but g is not semisimple. Hence
there exists an abelian ideal a C g. But then K(a,g) = 0, contradicting non-degeneracy of
K. Indeed, if x € g and y € a, then (ad x)(ad y)z = [z, [y, 2] € a for all z € g (and 0 for all

z € a. If follows that in the basis eq,...,ex of a, ey, ..., ek, €xi1, ..., e, basis of g, the matrix
of (ad z)(ad y) is of the form (8 ;) But trace of this matrix is 0, so K (z,y) = 0.

Conversely, let g be semisimple. Let a be an ideal of g. If K., is degenerate, so that
anNat # 0, hence b = anat is an ideal of g such that K(b,b) = 0. By considering the
adjoing representation of b in g and applying the Cartan criterion we conclude that b is
solvable. Since g is semisimple, we deduce that b = 0. Thus if g is semisimple, the Killing
form is non-degenerate, by taking a = g.

As for the second part, we already proved that K|,y is non-degenerate. Hence g = a @ a™.
By lemma it is a direct sum of ideals, so [a,a*] = 0. Hence K for a equals K of g restricted
to a. [

Definition 11.4. A Lie algebra g is called simple if its only ideals are 0 and g and g is not
abelian.

Corollary 11.1. Any semisimple, finite-dimensional Lie algebra over a field F of charac-
teristic 0 is a direct sum of simple Lie algebras.

Proof. 1f g is semisimple, but not simple, and if a is an ideal, then by the theorem, the
Killing form restricted to a is non-degenerate, hence g = a ® a*, where a and a’ are also
semisimple. After finitely many steps it can be decomposed into simple algebras. O]



