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Lecture 10 — Trace Form & Cartan’s criterion
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Definition 10.1. Let g be a Lie algebra and π a representation of g on a finite dimensional vector
space V . The associated trace form is a bilinear form on g, given by the following formula:

(a, b)V = tr (π(a)π(b))

Proposition 10.1. (i) The trace form is symmetric, i.e. (a, b)V = (b, a)V .

(ii) The trace form is invariant, i.e. ([a, b], c)V = (a, [b, c])V .

Proof. (i) follows from the fact that tr (AB) = tr (BA). For (ii), note the following:

([a, b], c)V = tr (π([a, b])π(c)) = tr (π(a)π(b)π(c)− π(b)π(a)π(c))

= tr (π(a)π(b)π(c)− π(a)π(c)π(b)) = tr (π(a)π([b, c]))

= (a, [b, c])V

Definition 10.2. If dim g < ∞, then the trace form of the adjoint representation is called the
Killing form:

κ(a, b) = tr ((ad a)(ad b))

Exercise 10.1. Let F be a field of characteristic 0. Suppose (·, ·) be an invariant bilinear form on
g. Show that if v ∈ g is such that ad a is nilpotent, then (ead va, ead vb) = (a, b). In other words,
the bilinear form is invariant with respect to the group G generated by ead v, ad v nilpotent.

Proof.

(ead va, ead vb) = (a+ (ad v)a+
1

2!
(ad v)2 + · · · , b+ (ad v)b+

1

2!
(ad v)2b+ · · · )

= (a, b) +
∑
i≥1

∑
j+k=i

1

j!k!
((ad v)ja, (ad v)kb)

Thus it suffices to prove that for i ≥ 1,
∑

j+k=i
1
j!k!((ad v)ja, (ad v)kb) = 0. Note the following:

((ad v)ja, (ad v)kb) = ((ad v)(ad v)j−1a, (ad v)kb) = −((ad v)j−1a, (ad v)k+1b)

Here we have used the invariance of (·, ·). So this means ((ad v)ia, b) = −((ad v)i−1, (ad v)b) =
((ad v)i−2, (ad v)2b) = · · · . So:

∑
j+k=i

1

j!k!
((ad v)ja, (ad v)kb) =

∑
j+k=i

1

j!k!
(−1)k((ad v)ia, b) =

1

i!
((ad v)ia, b)

∑
(−1)k

i!

j!k!
= 0

Above we have used the fact that
∑i

k=0(−1)k
(
i
k

)
= 0.
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Exercise 10.2. Show that the trace form of gln(F) and sln(F) associated to the standard represen-
tation is non-degenerate and the Killing form on sln(F) is also non-degenerate, provided char F - 2n.
Find the kernel of the Killing form on gln(F).

Proof. To show the trace form on gln(F) for the standard representation is non-degenerate, if∑
i,j aijeij lies in the kernel where for some r, s, ars 6= 0, then tr((

∑
i,j aijeij)esr) = tr(arsersesr) =

ars 6= 0 since tr(ei,jes,r) = 0 unless j = s, i = r, which is a contradiction. To show the trace form
on sln(F) for the standard representation is non-degenerate, if x =

∑
i,j aijeij lies in the kernel

and some ars 6= 0, then by the same argument we have a contradiction. So say ars = 0 for r 6= s,
so x =

∑
aiieii

. If ajj 6= akk for some j, k, then tr(
∑
aiieii, ejj − ekk) = ajj − ak 6= 0, which is a

contradiction. So ajj = akk∀j, k, so trx = na11 = 0, so a11 = 0 ( since char F - n, and x = 0 ).

For the killing form on gln(F), consider the basis of gln(F), {eij}. Then:

ad eijad ekl(egh) = [eij , δlgekl − δlkegl] = δjkδlgekh − δkiδlgekj − δjgδhkeil + δliδhkegj

The coefficient of egh in this expansion is agh = δgiδjkδlg − δjkδhgδhiδlg − δgiδlhδjgδhk + δhjδliδhk.
So:

κgln(eijekl) =
∑
g,h

agh =
∑
g,h

(δgiδjkδlg − δgkδhgδhiδlg − δglδklδjgδhk + δhjδliδhk)

= nδilδjk − δklδij − δijδkl + nδjkδil = 2nδilδjk − 2δijδkl = 2ntr(eijekl)− 2tr(eij)tr(ekl)

It follows that κgln(x, y) = 2ntr(xy) − 2tr(x)tr(y) by bilinearity. To calculate the radical of κgln ,
note if x =

∑
i,j xi,jei,j , κgln(x, ekl) = 2nxlk − 2(

∑
xii)δkl. If this is always 0, xlk = 0 when k 6= l,

and nxkk =
∑

i xii, so x = λI for some λ (since charF - 2n). So the radical of κgln is FI. By a
theorem from Lecture 11, since sln(F) is an ideal of gln(F), κsln is the restriction of κgln to sln(F);
hence κsln(x, y) = 2ntr(x)tr(y). Since it is a scalar multiple of the trace form of the standard
representation, which is non-degenerate, it follows that the radical of κsln is trivial.

Lemma 10.2 (Cartan). Let g be a finite dimensional Lie algebra over F = F, a field of character-
istic 0 (so that Q ⊂ F). Let π be a representation of g in a finite dimensional vector space V . Let
h be a Cartan sub-algebra of g, and consider the generalized weight space decomposition of V and
the generalized root space decomposition of g with respect to h:

V =
⊕
λ∈h∗

Vλ, g =
⊕
α∈h∗

gα, π (gα)Vλ ⊆ Vλ+α, [gα, gβ] ⊆ gα+β

Pick e ∈ gα, f ∈ g−α, so that h = [e, f ] ∈ g0 = h. Suppose that Vλ 6= 0. Then λ(h) = rα(h), where
r ∈ Q depends only on λ and α but not on h.

Proof. Let U =
⊕

n∈Z Vλ+nα ⊂ V . Then dimU < ∞, and U is π(e), π(f) and π(h) invariant. But
[π(e), π(f)] = π(h), hence trU (π(h)) = 0. Thus we have the following:

0 = trU (π(h)) =
∑
n

trVλ+nα(π(h)) =
∑
n

(λ+ nα)(h)dim Vλ+nα
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In the last line we have used the fact that the matrix of π(h)|Vλ+nα takes the following form:

A =


(λ+ nα)(h) ∗

(λ+ nα)(h) ∗
. . .

(λ+ nα)(h)



=⇒ λ(h)(
∑
n

dim Vλ+nα) = −α(h)
∑
n

n dim Vλ+nα

=⇒ λ(h) = rα(h), r = −
∑

n n dim Vλ+nα∑
n dim Vλ+nα

Note in the above that Vλ 6= 0, so
∑

n dim Vλ+nα 6= 0.

Theorem 10.3 (Cartan’s criterion). Let g be a subalgebra of gl(V ), where V is a finite dimensional
vector space over F = F, a field of characteristic 0. Then the following are equivalent:

1. (g, [g, g]) = 0, i.e. (a, b)V = 0 for a ∈ g, b ∈ [g, g].

2. (a, a)V = 0 for all a ∈ [g, g].

3. g is solvable.

Proof. (i) =⇒ (ii): Obvious.

(iii) =⇒ (i): By Lie’s theorem, in some basis of V , all matrices of g are upper triangular, and
thus [g, g] is strictly upper triangular. Thus π(ab) is strictly upper triangular and (a, b)V = 0 if
a ∈ g, b ∈ [g, g].

(ii) =⇒ (iii): Suppose not. Then the derived series of g stabilizes, so suppose [g(k), g(k)] = g(k)
for some k with g(k) 6= 0. Then (a, a)V = 0 for a ∈ g(k) and [g(k), g(k)] = g(k). We reach the desired
contradiction using the following Lemma.

Lemma 10.4. If g ⊂ glV , such that [g, g] = g, then (a, a)V 6= 0 for some a ∈ g.

Proof. Proof by contradiction. Choose a Cartan subalgebra h ⊂ g, and let:

V =
⊕
λ∈h∗

Vλ, g =
⊕
α∈h∗

gα

Since [g, g] = g, and [gα, gβ] ⊂ gα+β, we obtain that h =
∑

α∈h∗ [gα, g−α]. Hence by Cartan’s Lemma
λ(h) = rλ,αα(h) for rλ,α ∈ Q, 6= 0 if Vλ 6= 0. The assumption that (a, a)V = 0 means that, for all
h ∈ [gα, g−α]:

0 = (h, h)V = trV (π(h)2) =
∑
λ∈h∗

trVλ(π(h)2) =
∑
λ∈h∗

λ(h)2dim Vλ = α(h)2
∑
λ

r2λ,αdim Vλ
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In the above, we have used the fact that trVλ(π(h)2) = λ(h)2dim Vλ, which follows from the Jordan
form theorem, since π(h)|Vλ can be expressed as an upper triangular matrix with λ(h)-s on the
diagonal. It follows from this calculation that α(h) = 0, and hence λ(h) = 0 for all h ∈ [gα, g−α].
Since h =

∑
α∈h∗ [gα, g−α], it follows that λ(h) = 0 for all h ∈ h. Since λ ∈ h∗ was arbitrary, this

means V = V0.

Since π(gα)V = π(gα)V0 ⊂ Vα = 0 for α 6= 0, it follows that gα = 0 for α 6= 0. Hence g = g0, and g
is nilpotent. This contradicts the fact that [g, g] = g.

Corollary 10.5. A finite dimensional Lie algebra g over F = F is solvable iff κ(g, [g, g]) = 0.

Proof. Consider the adjoint representation g → gl(g). Its kernel is Z(g). So g is solvable iff
adg ⊂ gl(g) is a solvable. But by Cartan’s criterion, adg is solvable iff κ(g, [g, g]) = 0.

Exercise 10.3. Consider the following 4-dim solvable Lie algebra D = Heis3 + Fd, where Heis3 =
Fp + Fq + Fc, with the relations [d, p] = p, [d, q] = −q, [d, c] = 0. Define on D the bilinear form
(p, q) = (c, d) = 1, rest = 0. Show that this is a non-degenerate symmetric invariant bilinear form,
but (D, [D,D]) 6= 0, so Cartan’s criterion fails for this bilinear form.

Proof. It is symmetric by construction. It is nondegenerate since if a1p+a2q+a3c+a4d lies in the
kernel, taking the bilinear form with q, p, d, c respectively gives a1 = a2 = a3 = a4 = 0. Cartan’s
criterion fails since (p, q) 6= 0 and p ∈ D, q ∈ [D,D]. To check that it is invariant:

B([a1p+ a2q + a3c+ a4d,b1p+ b2q + b3c+ b4d], c1p+ c2q + c3c+ c4d)

= B((a1b2 − a2b1)c+ (a4b1 − a1b4)p+ (a2b4 − a4b2)q, c1p+ c2q + c3c+ c4d)

= −(a1b2 − a2b1)c4 + (a4b1 − a1b4)c1 + (a2b4 − a4b2)c1
B(a1p+ a2q + a3c+ a4d,[b1p+ b2q + b3c+ b4d, c1p+ c2q + c3c+ c4d])

= B(a1p+ a2q + a3c+ a4d, (b1c2 − b2c1)c+ (b4c1 − b1c4)p+ (b2c4 − b4c2)q)
= a1(b2c4 − b4c2) + a2(b4c1 − b1c4) + a4(b1c2 − b2c1)

By comparision, it is clear B([r, s], t) = B(r, [s, t]) for r = a1p + a2q + a3c + a4d, s = b1p + b2q +
b3c+ b4d, t = c1p+ c2q + c3c+ c4d, so B is invariant, as required.

Remark. Very often one can remove the condition F = F by the following trick. Let F ⊂ F be the
algebraic closure. Given a Lie algebra g over F, let g = F⊗F g be a Lie algebra over F.

Exercise 10.4. 1. g is solvable (resp. nilpotent) iff g is.

2. Derive Cartan’s criterion and Corollary for char F = 0 but not F = F.

3. Show that [g, g] = g is nilpotent iff g is solvable when char F = 0

4. ga0 is a Cartan sub-algebra for every regular element of a ∈ g for any field F.

Proof. By construction of g, if we pick a basis a1, ..., an of g, so that g = Fa1 + · · · + Fan, then
g = Fa1 + · · ·+ Fan with the same bracket relations holding.
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1. Note [g, g] = [g, g]. To see this, [g, g] is the F-span of [ai, aj ] with certain linear relations

holding between them, so both [g, g] and [g, g] are the F-span of [ai, aj ] with certain linear
relations holding between them; and the Lie algebra structure is the same. Iterating this, we
have g(i) = g(i). So g is solvable ↔ ∃i, g(i) = 0 ↔ ∃i, g(i) = 0 ↔ g is solvable. A similar
argument shows that [g, [g, g]] = [g, [g, g]], and more generally, gi = gi. So g is nilpotent
↔ ∃i, gi = 0↔ ∃i, gi = 0↔ g is nilpotent.

2. In Cartan’s Criterion, note that the second condition (a, a)V = 0∀a ∈ [g, g] is equivalent
to the condition (a, b)V = 0∀a, b ∈ [g, g], since (·, ·)V is symmetric (to see this, expand
(a + b, a + b)V = 0 and note it is characteristic 0). Thus by Cartan’s criterion, we have
(g, [g, g])V = 0↔ (g, [g, g])V = 0↔ (a, b)V = 0∀a, b ∈ [g, g]↔ (a, b)V = 0∀a, b ∈ [g, g]. So the
first two conditions of Cartan’s criterion are equivalent for charF = 0. By Cartan’s criterion,
(a, b)V = 0∀a, b ∈ [g, g] ↔ (a, b)V = 0∀a, b ∈ [g, g] ↔ g is solvable ↔ g is solvable, so the
last two conditions of Cartan’s criterion are equivalent for charF = 0. For the Corollary, g is
solvable ↔ g is solvable ↔ κ(g, [g, g]) = 0 ↔ κ(g, [g, g]) = 0, so the Corollary is true for all
charF = 0.

3. This was proven in a previous exercise when F = F. So g is solvable → g is solvable → [g, g]
is nilpotent → [g, g] is nilpotent.

4. a is a regular element of g =⇒ a is a regular element of g (since the discriminant of a is same
in both g and g). Hence ga0 is a Cartan sub-algebra of g, and hence ga0 is a Cartan sub-algebra
of g. To see the last step, a sub-algebra is Cartan iff it is nilpotent and self-normalizing, and
ga0 = ga0, so since ga0 is nilpotent, ga0 is nilpotent, and Ng(g

a
0) = ga0 → Ng(g

a
0) = ga0.
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