Scott Kovach

October 19, 2010

1 Lecture 9

1.1 Chevalley's theorem on Conjugacy of Cartan subalgebras.

Definition 1. Let A be a nilpotent linear operator on a vector space V over a field \mathbb{F} of char 0. Define $e^A = I + A + A^2/2! + \cdots$. It is finite since A is nilpotent.

Ex 9.1 If A and B are commuting nilpotent operators, then we know that A + B is a nilpotent operator; show $e^{A+B} = e^A e^B$. In particular, $e^A e^{-A} = I$, hence e^A is invertible.

Ex 9.2 Let \mathfrak{g} be an arbitrary algebra over a field \mathbb{F} of characteristic 0, and let D be a nilpotent derivation of \mathfrak{g} . Show that e^{D} is an automorphism of \mathfrak{g} .

Lemma 1. Assume \mathbb{F} algebraically closed. Let $f : \mathbb{F}^m \to \mathbb{F}^m$ be a polynomial map, that is $\begin{pmatrix} x_1 \\ f_1(x_1, \dots, x_m) \end{pmatrix}$

 $f\begin{pmatrix}x_1\\\vdots\\x_m\end{pmatrix} = \begin{pmatrix}f_1(x_1,\ldots,x_m)\\\cdots\\f_m(x_1,\ldots,x_m)\end{pmatrix}, \text{ where the } f_i \text{ are polynomials. Suppose that for some } a \in \mathbb{F}^m$

the linear map $df|_{x=a} : \mathbb{F}^m \to \mathbb{F}^m$ is non-singular. Then $f(\mathbb{F}^m)$ contains a non-empty Zariski open subset in \mathbb{F}^m .

Proof. Ex 9.3 Show

- 1. $df|_{x=a}$ is a linear map given by the matrix $(\frac{\partial f_i}{\partial x_j}(a))_{i,j}$.
- 2. Suppose that $F(f_1(x_1, \ldots, x_m), \ldots, f_m(x_1, \ldots, x_m)) = 0$ for some non-zero polynomial F. Then $\det(\frac{\partial f_i}{\partial x_j}) = 0$ (Hint: apply the chain rule to $\frac{\partial F}{\partial x_j}$).
- 3. If $y_1, \ldots, y_m \in \mathbb{F}[x_1, \ldots, x_m]$ are algebraically independent, then

$$\mathbb{F}(x_1,\ldots,x_m) \supset \mathbb{F}(y_1,\ldots,y_m)$$

is a finite extension of fields. i.e. each x_i satisfies a non-zero polynomial equation over $\mathbb{F}[y_1, \ldots, y_m]$.

4. Then the Zariski open set we are looking for is the set of points $\{y \in \mathbb{F}^m | p_i(y) \neq 0\}$, where $p_i(y_1, \ldots, y_m)$ is the leading coefficient of the polynomials satisfied by x_i .