18.745 Lecture 6 Exercises

September 28, 2010

$\mathbf{1}$

Show that any nonabelian 3-dimensional nilpotent Lie algebra is isomorphic to the Heisenberg algebra H_3 .

$\mathbf{2}$

Suppose \mathbb{F} has characteristic 2, and $V = \mathbb{F}[x]/(x^2)$ is a representation of H_3 where $p \mapsto \frac{\partial}{\partial x}$, $q \mapsto x$, and $c \mapsto I$. Then $V = V_{\lambda}$, but λ is not a linear functional on H_3 . Compute λ .

3

By the example of the adjoint representation of a nonabelian solvable Lie algebra, show that the generalized weight space decomposition fails if the Lie algebra is solvable but not nilpotent.

4

Take $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{h} = \{$ diagonal matrices $\}$. Find the generalized weight space decomposition in both the tautological and the adjoint representations, and check part (b) in the theorem. That is, check the assertion that

$$\pi \left(\mathfrak{g}^{\mathfrak{h}}_{\lambda} \right) \subseteq V^{\mathfrak{h}}_{\lambda+\alpha}$$
$$\left[\mathfrak{g}^{\mathrm{ad} \mathfrak{h}}_{\alpha}, \mathfrak{g}^{\mathrm{ad} \mathfrak{h}}_{\beta} \right] = \mathfrak{g}^{\mathrm{ad} \mathfrak{h}}_{\alpha+\beta}.$$