18.745, Lecture 5, Exercises

Exercise. 5.1 Show that we may relax the assumption on \mathbb{F} in Lie's Lemma. Show Lie's Lemma under the assumptions that \mathbb{F} is algebraically closed and that dim $V < char \mathbb{F}$.

Exercise. 5.2 Consider the Heisenberg algebra H_3 and its representation on $\mathbb{F}[x]$ given by

$$c \mapsto Id,$$

$$p \mapsto (f(x) \mapsto xf(x)), \forall f(x) \in \mathbb{F}[x],$$

$$q \mapsto (f(x) \mapsto \frac{d}{dx}f(x)), \forall f(x) \in \mathbb{F}[x].$$

Show that the ideal generated by x^N , $0 < N = char \mathbb{F}$, in $\mathbb{F}[x]$ is invariant for the representation of H_3 and that the induced representation of H_3 on $\mathbb{F}[x]/(x^N)$ has no weight.

Exercise. 5.3 Show the following two corollaries to Lie's Theorem:

- for all representations π of a solvable Lie algebra \mathfrak{g} on a finite dimensional vector space V over an algebraically closed field \mathbb{F} , char $\mathbb{F} = 0$, there exists a basis for V for which the matrices of $\pi(\mathfrak{g})$ are upper triangular;
- a solvable subalgebra $\mathfrak{g} \subset \mathfrak{gl}_V$ (V is finite dimensional over an algebraically closed field \mathbb{F} , *char* $\mathbb{F} = 0$) is contained in the subalgebra of upper triangular matrices over \mathbb{F} for some basis of V.

Exercise. 5.4 Let \mathfrak{g} be a finite dimensional solvable Lie algebra over the algebrically closed field \mathbb{F} , *char* $\mathbb{F} = 0$. Show that $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent.