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From Associative Algebras

We saw in the previous lecture that we can form a Lie algebra A_, from an associative algebra A,
with binary operation the commutator bracket [a,b] = ab— ba. (The same construction worked for
algebras satisfying any one of a variety of other conditions).

As Algebras of Derivations

Lie algebras are often constructed as the subalgebra of derivations of a given algebra. This corre-
sponds to the use of vector fields in geometry.

Definition 2.1. For any algebra A over a field F, a derivation of A is an F-vector space endo-
morphism D of A satisfying D(ab) = D(a)b+ aD(b). Let Der(A) C gl(A) be denote the space of
derivations of A.

For an element a of a Lie algebra g, define a map ad(a) : g — g, by b — [a, b]. This map is referred
to as the adjoint operator. Rewriting the Jacobi identity as

[a, [b, ] = [[a, 0], ] + [b, [a, c]], (1)

we see that ad(a) is a derivation of g. Derivations of this form are referred to as inner derivations
of g.

Proposition 2.1.

(a) Der(A) is a subalgebra of gl(A) (with the usual commutator bracket).

(b) The inner derivations of a Lie algebra g form an ideal of Der(g). More precisely,
[D,ad(a)] = ad(D(a)) for all D € Der(a) and a € g. (2)
Exercise 2.1. Prove (a).
Proof of (b): We check (2) for all derivations D and a,b € g:
[D,ad(a)]b = Dla,b] — [a, Db] = [Da,b] = ad(Da)b,

where the second equality holds as D is a derivation. ]



From Poisson Brackets

Exercise 2.2. Let A = F[zyq,...,x,], or let A be the ring of C*° functions on zy, ..., x,. Define a
Poisson bracket on A by:
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Show that this bracket satisfies the axioms of a Lie algebra if and only if {z;,z;} = —{z;,2;} and
any triple x;, x;, v, satisfy the Jacobi identity.

Example 2.1. Let A = Flp1,...,pn,q1,---,qn). Let {pi,p;j} = {@,¢;} = 0 and {p;,q;} =
—{qi,pj} = 0; ;. Both conditions clearly hold, and explicitly:
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Via Structure Constants

Given a basis eq,...,e, of a Lie algebra g over F, the bracket is determined by the structure
constants cfj € IF, defined by:
lei,ej] = Zcfjek.
k
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The structure constants must satisfy the obvious skew-symmetry condition (cij = —cjl-), and a
more complicated (quadratic) condition corresponding to the Jacobi identity.

Definition 2.2. Let g;, go, be two Lie algebras over F and ¢ : g1 — g2 a linear map. We say that
¢ is a homomorphism if it preserves the bracket: ¢([a,b]) = [p(a), ¢(b), and an isomorphism it is
bijective. If ¢ is an isomorphism, we say that g; and go are isomorphic, written gy = go.

Exercise 2.3. Let ¢ : g1 — go be homomorphism. Then:

(a) ker ¢ is an ideal of g;.
(b) im ¢ is a subalgebra of go.

(c) im ¢ = g1/ ker .

As the Lie Algebra of an Algebraic (or Lie) Group

Definition 2.3. An algebraic group G over a field I is a collection { P, },er of polynomials on the
space of matrices Mat,, (F) such that for any unital commutative associative algebra A over F, the
set

G(A) :={g € Mat,(A) | g is ivertible, and P,(g) =0 for all o € I}

is a group under matrix multiplication.

Example 2.2. The general linear group GL,. Let {P,} = 0. GL,(A) is the set of invertible
matrices with entries in A. This is a group for any A, so that GL,, is an algebraic group.



Example 2.3. The special linear group SL,. Let {P,} = {det(z;;) — 1}. SL,(A) is the set of
invertible matrices with entries in A and determinant 1. This is a group for any A, so that SL,, is
an algebraic group.

Exercise 2.4. Given B € Mat,(F) , let O, g(A) = {g € GL,(A) : ' Bg = B}. Show that this
family of groups is given by an algebraic group.

Definition 2.4. Over a given field [, define the algebra of dual numbers D to be
D :=TFle]/(e) = {a+be|abeT, =0}
We then define the Lie algebra Lie G of an algebraic group G to be
Lie G:={X € gl (F) | I, + eX € G(D).

Example 2.4. (1) Lie GL,, = GL,(F), sinve (I, + eX)™! = I, — eX. (I, — eX approximates
the inverse to order two, but over dual numbers, order two is ignored).

(2) Lie SL,, = sl,,(F).
(3) Lie On,B = Ofn B-
Exercise 2.5. Prove (2) and (3) from example 2.4.

Theorem 2.2. Lie G is a Lie subalgebra of gl,,(IF).

Proof. We first show that Lie G is a subspace. Indeed, X € Lie G iff P,(I, + ¢X) = 0 for all a.
Using the Taylor expansion:
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as €2 = 0. Now as P,(I,) = 0 (every group contains the identity), this condition is linear in the
Xij, so that Lie G is a subspace.

Now suppose that X,Y € Lie G. We wish to prove that XY — Y X € Lie G. We have:
I, + eX € G(F[e]/(?)), and I, + €Y € G(F[€]/((€)?)).
Viewing these as elements of G(F[e, €']/(€2, (¢)?)), we have

(In + eX)(I, + €Y)I, + eX) NI, + €Y) L = I, + e (XY — Y X) € G(Fle, €]/ (€%, (€)?)).

In particular, I, + e¢ (XY — Y X) € G(Fle€']/((e€')?)) = G(D), so that XY — Y X € Lie G. O



