Lecture 2 - Some Sources of Lie Algebras

Prof. Victor Kac
Scribe: Michael Donovan

From Associative Algebras

We saw in the previous lecture that we can form a Lie algebra A_{-}, from an associative algebra A, with binary operation the commutator bracket $[a, b]=a b-b a$. (The same construction worked for algebras satisfying any one of a variety of other conditions).

As Algebras of Derivations

Lie algebras are often constructed as the subalgebra of derivations of a given algebra. This corresponds to the use of vector fields in geometry.

Definition 2.1. For any algebra A over a field \mathbb{F}, a derivation of A is an \mathbb{F}-vector space endomorphism D of A satisfying $D(a b)=D(a) b+a D(b)$. Let $\operatorname{Der}(A) \subset \mathfrak{g l}(A)$ be denote the space of derivations of A.

For an element a of a Lie algebra \mathfrak{g}, define a map $\mathbf{~ a d}(a): \mathfrak{g} \rightarrow \mathfrak{g}$, by $b \mapsto[a, b]$. This map is referred to as the adjoint operator. Rewriting the Jacobi identity as

$$
\begin{equation*}
[a,[b, c]]=[[a, b], c]+[b,[a, c]], \tag{1}
\end{equation*}
$$

we see that $\mathbf{a d}(a)$ is a derivation of \mathfrak{g}. Derivations of this form are referred to as inner derivations of \mathfrak{g}.

Proposition 2.1.

(a) $\operatorname{Der}(A)$ is a subalgebra of $\mathfrak{g l}(A)$ (with the usual commutator bracket).
(b) The inner derivations of a Lie algebra \mathfrak{g} form an ideal of $\operatorname{Der}(\mathfrak{g})$. More precisely,

$$
\begin{equation*}
[D, \mathbf{a d}(a)]=\mathbf{a d}(D(a)) \text { for all } D \in \operatorname{Der}(a) \text { and } a \in \mathfrak{g} \tag{2}
\end{equation*}
$$

Exercise 2.1. Prove (a).
Proof of (b): We check (2) for all derivations D and $a, b \in \mathfrak{g}$:

$$
[D, \mathbf{a d}(a)] b=D[a, b]-[a, D b]=[D a, b]=\mathbf{a d}(D a) b,
$$

where the second equality holds as D is a derivation.

From Poisson Brackets

Exercise 2.2. Let $A=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, or let A be the ring of C^{∞} functions on x_{1}, \ldots, x_{n}. Define a Poisson bracket on A by:

$$
\begin{equation*}
\{f, g\}=\sum_{i, l=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}\left\{x_{i}, x_{j}\right\}, \text { for fixed choices of }\left\{x_{i}, x_{j}\right\} \in A . \tag{3}
\end{equation*}
$$

Show that this bracket satisfies the axioms of a Lie algebra if and only if $\left\{x_{i}, x_{j}\right\}=-\left\{x_{j}, x_{i}\right\}$ and any triple x_{i}, x_{j}, x_{k} satisfy the Jacobi identity.

Example 2.1. Let $A=\mathbb{F}\left[p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right]$. Let $\left\{p_{i}, p_{j}\right\}=\left\{q_{i}, q_{j}\right\}=0$ and $\left\{p_{i}, q_{j}\right\}=$ $-\left\{q_{i}, p_{j}\right\}=\delta_{i, j}$. Both conditions clearly hold, and explicitly:

$$
\{f, g\}=\sum_{i} \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}
$$

Via Structure Constants

Given a basis e_{1}, \ldots, e_{n} of a Lie algebra \mathfrak{g} over \mathbb{F}, the bracket is determined by the structure constants $c_{i j}^{k} \in \mathbb{F}$, defined by:

$$
\left[e_{i}, e_{j}\right]=\sum_{k} c_{i j}^{k} e_{k}
$$

The structure constants must satisfy the obvious skew-symmetry condition $\left(c_{i j}^{k}=-c_{j i}^{k}\right)$, and a more complicated (quadratic) condition corresponding to the Jacobi identity.

Definition 2.2. Let $\mathfrak{g}_{1}, \mathfrak{g}_{2}$, be two Lie algebras over \mathbb{F} and $\varphi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ a linear map. We say that φ is a homomorphism if it preserves the bracket: $\varphi([a, b])=[\varphi(a), \varphi(b)$, and an isomorphism it is bijective. If φ is an isomorphism, we say that \mathfrak{g}_{1} and \mathfrak{g}_{2} are isomorphic, written $\mathfrak{g}_{1} \cong g_{2}$.

Exercise 2.3. Let $\varphi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ be homomorphism. Then:
(a) $\operatorname{ker} \varphi$ is an ideal of \mathfrak{g}_{1}.
(b) im φ is a subalgebra of \mathfrak{g}_{2}.
(c) $\operatorname{im} \varphi \cong g_{1} / \operatorname{ker} \varphi$.

As the Lie Algebra of an Algebraic (or Lie) Group

Definition 2.3. An algebraic group G over a field \mathbb{F} is a collection $\left\{P_{\alpha}\right\}_{\alpha \in I}$ of polynomials on the space of matrices $\operatorname{Mat}_{n}(\mathbb{F})$ such that for any unital commutative associative algebra A over \mathbb{F}, the set

$$
G(A):=\left\{g \in \operatorname{Mat}_{n}(A) \mid g \text { is ivertible, and } P_{\alpha}(g)=0 \text { for all } \alpha \in I\right\}
$$

is a group under matrix multiplication.
Example 2.2. The general linear group GL_{n}. Let $\left\{P_{\alpha}\right\}=\emptyset . \mathrm{GL}_{n}(A)$ is the set of invertible matrices with entries in A. This is a group for any A, so that GL_{n} is an algebraic group.

Example 2.3. The special linear group SL_{n}. Let $\left\{P_{\alpha}\right\}=\left\{\operatorname{det}\left(x_{i j}\right)-1\right\} . \mathrm{SL}_{n}(A)$ is the set of invertible matrices with entries in A and determinant 1 . This is a group for any A, so that SL_{n} is an algebraic group.
Exercise 2.4. Given $B \in \operatorname{Mat}_{n}(\mathbb{F})$, let $O_{n, B}(A)=\left\{g \in \mathrm{GL}_{n}(A): g^{\mathrm{T}} B g=B\right\}$. Show that this family of groups is given by an algebraic group.

Definition 2.4. Over a given field \mathbb{F}, define the algebra of dual numbers D to be

$$
D:=\mathbb{F}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon \mid a, b \in \mathbb{F}, \epsilon^{2}=0\right\} .
$$

We then define the Lie algebra Lie G of an algebraic group G to be

$$
\text { Lie } G:=\left\{X \in \mathfrak{g l}_{n}(\mathbb{F}) \mid I_{n}+\epsilon X \in G(D) .\right.
$$

Example 2.4. (1) Lie $\mathrm{GL}_{n}=\mathrm{GL}_{n}(\mathbb{F})$, sinve $\left(I_{n}+\epsilon X\right)^{-1}=I_{n}-\epsilon X$. $\left(I_{n}-\epsilon X\right.$ approximates the inverse to order two, but over dual numbers, order two is ignored).
(2) Lie $\mathrm{SL}_{n}=\mathfrak{s l}_{n}(\mathbb{F})$.
(3) Lie $O_{n, B}=o_{\mathbb{F}^{n}, B}$.

Exercise 2.5. Prove (2) and (3) from example 2.4.
Theorem 2.2. Lie G is a Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{F})$.
Proof. We first show that Lie G is a subspace. Indeed, $X \in$ Lie G iff $P_{\alpha}\left(I_{n}+\epsilon X\right)=0$ for all α. Using the Taylor expansion:

$$
P_{\alpha}\left(I_{n}+\epsilon X\right)=P_{\alpha}\left(I_{n}\right)+\sum_{i, j} \frac{\partial P_{\alpha}}{\partial x_{i j}}\left(I_{n}\right) \epsilon x_{i j},
$$

as $\epsilon^{2}=0$. Now as $P_{\alpha}\left(I_{n}\right)=0$ (every group contains the identity), this condition is linear in the $X_{i j}$, so that Lie G is a subspace.
Now suppose that $X, Y \in \operatorname{Lie} G$. We wish to prove that $X Y-Y X \in \operatorname{Lie} G$. We have:

$$
I_{n}+\epsilon X \in G\left(\mathbb{F}[\epsilon] /\left(\epsilon^{2}\right)\right), \text { and } I_{n}+\epsilon^{\prime} Y \in G\left(\mathbb{F}\left[\epsilon^{\prime}\right] /\left(\left(\epsilon^{\prime}\right)^{2}\right)\right) .
$$

Viewing these as elements of $G\left(\mathbb{F}\left[\epsilon, \epsilon^{\prime}\right] /\left(\epsilon^{2},\left(\epsilon^{\prime}\right)^{2}\right)\right)$, we have

$$
\left(I_{n}+\epsilon X\right)\left(I_{n}+\epsilon^{\prime} Y\right)\left(I_{n}+\epsilon X\right)^{-1}\left(I_{n}+\epsilon^{\prime} Y\right)^{-1}=I_{n}+\epsilon \epsilon^{\prime}(X Y-Y X) \in G\left(\mathbb{F}\left[\epsilon, \epsilon^{\prime}\right] /\left(\epsilon^{2},\left(\epsilon^{\prime}\right)^{2}\right)\right)
$$

In particular, $I_{n}+\epsilon \epsilon^{\prime}(X Y-Y X) \in G\left(\mathbb{F}\left[\epsilon \epsilon^{\prime}\right] /\left(\left(\epsilon \epsilon^{\prime}\right)^{2}\right)\right)=G(D)$, so that $X Y-Y X \in$ Lie G.

