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Lecture 2 — Some Sources of Lie Algebras

Prof. Victor Kac Scribe: Michael Donovan

From Associative Algebras

We saw in the previous lecture that we can form a Lie algebra A−, from an associative algebra A,
with binary operation the commutator bracket [a, b] = ab− ba. (The same construction worked for
algebras satisfying any one of a variety of other conditions).

As Algebras of Derivations

Lie algebras are often constructed as the subalgebra of derivations of a given algebra. This corre-
sponds to the use of vector fields in geometry.

Definition 2.1. For any algebra A over a field F, a derivation of A is an F-vector space endo-
morphism D of A satisfying D(ab) = D(a)b + aD(b). Let Der(A) ⊂ gl(A) be denote the space of
derivations of A.

For an element a of a Lie algebra g, define a map ad(a) : g→ g, by b 7→ [a, b]. This map is referred
to as the adjoint operator. Rewriting the Jacobi identity as

[a, [b, c]] = [[a, b], c] + [b, [a, c]], (1)

we see that ad(a) is a derivation of g. Derivations of this form are referred to as inner derivations
of g.

Proposition 2.1.

(a) Der(A) is a subalgebra of gl(A) (with the usual commutator bracket).

(b) The inner derivations of a Lie algebra g form an ideal of Der(g). More precisely,

[D,ad(a)] = ad(D(a)) for all D ∈ Der(a) and a ∈ g. (2)

Exercise 2.1. Prove (a).

Proof of (b): We check (2) for all derivations D and a, b ∈ g:

[D,ad(a)]b = D[a, b]− [a,Db] = [Da, b] = ad(Da)b,

where the second equality holds as D is a derivation.
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From Poisson Brackets

Exercise 2.2. Let A = F[x1, . . . , xn], or let A be the ring of C∞ functions on x1, . . . , xn. Define a
Poisson bracket on A by:

{f, g} =
n∑

i,l=1

∂f

∂xi

∂g

∂xj
{xi, xj}, for fixed choices of {xi, xj} ∈ A. (3)

Show that this bracket satisfies the axioms of a Lie algebra if and only if {xi, xj} = −{xj , xi} and
any triple xi, xj , xk satisfy the Jacobi identity.

Example 2.1. Let A = F[p1, . . . , pn, q1, . . . , qn]. Let {pi, pj} = {qi, qj} = 0 and {pi, qj} =
−{qi, pj} = δi,j . Both conditions clearly hold, and explicitly:

{f, g} =
∑
i

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
.

Via Structure Constants

Given a basis e1, . . . , en of a Lie algebra g over F, the bracket is determined by the structure
constants ckij ∈ F, defined by:

[ei, ej ] =
∑
k

ckijek.

The structure constants must satisfy the obvious skew-symmetry condition (ckij = −ckji), and a
more complicated (quadratic) condition corresponding to the Jacobi identity.

Definition 2.2. Let g1, g2, be two Lie algebras over F and ϕ : g1 → g2 a linear map. We say that
ϕ is a homomorphism if it preserves the bracket: ϕ([a, b]) = [ϕ(a), ϕ(b), and an isomorphism it is
bijective. If ϕ is an isomorphism, we say that g1 and g2 are isomorphic, written g1

∼= g2.

Exercise 2.3. Let ϕ : g1 → g2 be homomorphism. Then:

(a) kerϕ is an ideal of g1.

(b) im ϕ is a subalgebra of g2.

(c) im ϕ ∼= g1/ kerϕ.

As the Lie Algebra of an Algebraic (or Lie) Group

Definition 2.3. An algebraic group G over a field F is a collection {Pα}α∈I of polynomials on the
space of matrices Matn(F) such that for any unital commutative associative algebra A over F, the
set

G(A) := {g ∈ Matn(A) | g is ivertible, and Pα(g) = 0 for all α ∈ I}

is a group under matrix multiplication.

Example 2.2. The general linear group GLn. Let {Pα} = ∅. GLn(A) is the set of invertible
matrices with entries in A. This is a group for any A, so that GLn is an algebraic group.
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Example 2.3. The special linear group SLn. Let {Pα} = {det(xij) − 1}. SLn(A) is the set of
invertible matrices with entries in A and determinant 1. This is a group for any A, so that SLn is
an algebraic group.

Exercise 2.4. Given B ∈ Matn(F) , let On,B(A) = {g ∈ GLn(A) : gTBg = B}. Show that this
family of groups is given by an algebraic group.

Definition 2.4. Over a given field F, define the algebra of dual numbers D to be

D := F[ε]/(ε2) = {a+ bε | a, b ∈ F, ε2 = 0}.

We then define the Lie algebra Lie G of an algebraic group G to be

Lie G := {X ∈ gln(F) | In + εX ∈ G(D).

Example 2.4. (1) Lie GLn = GLn(F), sinve (In + εX)−1 = In − εX. (In − εX approximates
the inverse to order two, but over dual numbers, order two is ignored).

(2) Lie SLn = sln(F).

(3) Lie On,B = oFn,B.

Exercise 2.5. Prove (2) and (3) from example 2.4.

Theorem 2.2. Lie G is a Lie subalgebra of gln(F).

Proof. We first show that Lie G is a subspace. Indeed, X ∈ Lie G iff Pα(In + εX) = 0 for all α.
Using the Taylor expansion:

Pα(In + εX) = Pα(In) +
∑
i,j

∂Pα
∂xij

(In)εxij ,

as ε2 = 0. Now as Pα(In) = 0 (every group contains the identity), this condition is linear in the
Xij , so that Lie G is a subspace.

Now suppose that X,Y ∈ Lie G. We wish to prove that XY − Y X ∈ Lie G. We have:

In + εX ∈ G(F[ε]/(ε2)), and In + ε′Y ∈ G(F[ε′]/((ε′)2)).

Viewing these as elements of G(F[ε, ε′]/(ε2, (ε′)2)), we have

(In + εX)(In + ε′Y )(In + εX)−1(In + ε′Y )−1 = In + εε′(XY − Y X) ∈ G(F[ε, ε′]/(ε2, (ε′)2)).

In particular, In + εε′(XY − Y X) ∈ G(F[εε′]/((εε′)2)) = G(D), so that XY − Y X ∈ Lie G.
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