18.745 Introduction to Lie Algebras	
-------------------------------------	--

September 14, 2010

Lecture 2 — Some Sources of Lie Algebras

Prof. Victor Kac Scribe: Michael Donovan

From Associative Algebras

We saw in the previous lecture that we can form a Lie algebra A_{-} , from an associative algebra A, with binary operation the commutator bracket [a, b] = ab - ba. (The same construction worked for algebras satisfying any one of a variety of other conditions).

As Algebras of Derivations

Lie algebras are often constructed as the subalgebra of derivations of a given algebra. This corresponds to the use of vector fields in geometry.

Definition 2.1. For any algebra A over a field \mathbb{F} , a derivation of A is an \mathbb{F} -vector space endomorphism D of A satisfying D(ab) = D(a)b + aD(b). Let $Der(A) \subset \mathfrak{gl}(A)$ be denote the space of derivations of A.

For an element a of a Lie algebra \mathfrak{g} , define a map $\mathbf{ad}(a) : \mathfrak{g} \to \mathfrak{g}$, by $b \mapsto [a, b]$. This map is referred to as the adjoint operator. Rewriting the Jacobi identity as

$$[a, [b, c]] = [[a, b], c] + [b, [a, c]],$$
(1)

we see that $\mathbf{ad}(a)$ is a derivation of \mathfrak{g} . Derivations of this form are referred to as inner derivations of \mathfrak{g} .

Proposition 2.1.

- (a) Der(A) is a subalgebra of $\mathfrak{gl}(A)$ (with the usual commutator bracket).
- (b) The inner derivations of a Lie algebra \mathfrak{g} form an ideal of $Der(\mathfrak{g})$. More precisely,

$$[D, \mathbf{ad}(a)] = \mathbf{ad}(D(a)) \text{ for all } D \in \operatorname{Der}(a) \text{ and } a \in \mathfrak{g}.$$
(2)

Exercise 2.1. Prove (a).

Proof of (b): We check (2) for all derivations D and $a, b \in \mathfrak{g}$:

$$[D, \mathbf{ad}(a)]b = D[a, b] - [a, Db] = [Da, b] = \mathbf{ad}(Da)b,$$

where the second equality holds as D is a derivation.

From Poisson Brackets

Exercise 2.2. Let $A = \mathbb{F}[x_1, \ldots, x_n]$, or let A be the ring of C^{∞} functions on x_1, \ldots, x_n . Define a Poisson bracket on A by:

$$\{f,g\} = \sum_{i,l=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \{x_i, x_j\}, \text{ for fixed choices of } \{x_i, x_j\} \in A.$$
(3)

Show that this bracket satisfies the axioms of a Lie algebra if and only if $\{x_i, x_j\} = -\{x_j, x_i\}$ and any triple x_i, x_j, x_k satisfy the Jacobi identity.

Example 2.1. Let $A = \mathbb{F}[p_1, \ldots, p_n, q_1, \ldots, q_n]$. Let $\{p_i, p_j\} = \{q_i, q_j\} = 0$ and $\{p_i, q_j\} = -\{q_i, p_j\} = \delta_{i,j}$. Both conditions clearly hold, and explicitly:

$$\{f,g\} = \sum_{i} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial q_i}$$

Via Structure Constants

Given a basis e_1, \ldots, e_n of a Lie algebra \mathfrak{g} over \mathbb{F} , the bracket is determined by the structure constants $c_{ij}^k \in \mathbb{F}$, defined by:

$$[e_i, e_j] = \sum_k c_{ij}^k e_k.$$

The structure constants must satisfy the obvious skew-symmetry condition $(c_{ij}^k = -c_{ji}^k)$, and a more complicated (quadratic) condition corresponding to the Jacobi identity.

Definition 2.2. Let $\mathfrak{g}_1, \mathfrak{g}_2$, be two Lie algebras over \mathbb{F} and $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ a linear map. We say that φ is a homomorphism if it preserves the bracket: $\varphi([a, b]) = [\varphi(a), \varphi(b), \text{ and an isomorphism it is bijective. If <math>\varphi$ is an isomorphism, we say that \mathfrak{g}_1 and \mathfrak{g}_2 are isomorphic, written $\mathfrak{g}_1 \cong g_2$.

Exercise 2.3. Let $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ be homomorphism. Then:

- (a) ker φ is an ideal of \mathfrak{g}_1 .
- (b) im φ is a subalgebra of \mathfrak{g}_2 .
- (c) im $\varphi \cong g_1 / \ker \varphi$.

As the Lie Algebra of an Algebraic (or Lie) Group

Definition 2.3. An algebraic group G over a field \mathbb{F} is a collection $\{P_{\alpha}\}_{\alpha \in I}$ of polynomials on the space of matrices $\operatorname{Mat}_{n}(\mathbb{F})$ such that for any unital commutative associative algebra A over \mathbb{F} , the set

 $G(A) := \{g \in \operatorname{Mat}_n(A) \mid g \text{ is ivertible, and } P_\alpha(g) = 0 \text{ for all } \alpha \in I\}$

is a group under matrix multiplication.

Example 2.2. The general linear group GL_n . Let $\{P_\alpha\} = \emptyset$. $\operatorname{GL}_n(A)$ is the set of invertible matrices with entries in A. This is a group for any A, so that GL_n is an algebraic group.

Example 2.3. The special linear group SL_n . Let $\{P_\alpha\} = \{\det(x_{ij}) - 1\}$. $SL_n(A)$ is the set of invertible matrices with entries in A and determinant 1. This is a group for any A, so that SL_n is an algebraic group.

Exercise 2.4. Given $B \in \operatorname{Mat}_n(\mathbb{F})$, let $O_{n,B}(A) = \{g \in \operatorname{GL}_n(A) : g^{\mathrm{T}}Bg = B\}$. Show that this family of groups is given by an algebraic group.

Definition 2.4. Over a given field \mathbb{F} , define the algebra of dual numbers D to be

 $D := \mathbb{F}[\epsilon]/(\epsilon^2) = \{a + b\epsilon \mid a, b \in \mathbb{F}, \ \epsilon^2 = 0\}.$

We then define the Lie algebra **Lie** G of an algebraic group G to be

Lie
$$G := \{ X \in \mathfrak{gl}_n(\mathbb{F}) \mid I_n + \epsilon X \in G(D).$$

- **Example 2.4.** (1) Lie $GL_n = GL_n(\mathbb{F})$, sinve $(I_n + \epsilon X)^{-1} = I_n \epsilon X$. $(I_n \epsilon X$ approximates the inverse to order two, but over dual numbers, order two is ignored).
 - (2) Lie $SL_n = \mathfrak{sl}_n(\mathbb{F}).$
 - (3) Lie $O_{n,B} = o_{\mathbb{F}^n,B}$.

Exercise 2.5. Prove (2) and (3) from example 2.4.

Theorem 2.2. Lie G is a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{F})$.

Proof. We first show that Lie G is a subspace. Indeed, $X \in \text{Lie } G$ iff $P_{\alpha}(I_n + \epsilon X) = 0$ for all α . Using the Taylor expansion:

$$P_{\alpha}(I_n + \epsilon X) = P_{\alpha}(I_n) + \sum_{i,j} \frac{\partial P_{\alpha}}{\partial x_{ij}}(I_n) \epsilon x_{ij},$$

as $\epsilon^2 = 0$. Now as $P_{\alpha}(I_n) = 0$ (every group contains the identity), this condition is linear in the X_{ij} , so that **Lie** G is a subspace.

Now suppose that $X, Y \in \text{Lie } G$. We wish to prove that $XY - YX \in \text{Lie } G$. We have:

$$I_n + \epsilon X \in G(\mathbb{F}[\epsilon]/(\epsilon^2)), \text{ and } I_n + \epsilon' Y \in G(\mathbb{F}[\epsilon']/((\epsilon')^2)).$$

Viewing these as elements of $G(\mathbb{F}[\epsilon, \epsilon']/(\epsilon^2, (\epsilon')^2))$, we have

$$(I_n + \epsilon X)(I_n + \epsilon' Y)(I_n + \epsilon X)^{-1}(I_n + \epsilon' Y)^{-1} = I_n + \epsilon \epsilon' (XY - YX) \in G(\mathbb{F}[\epsilon, \epsilon']/(\epsilon^2, (\epsilon')^2)).$$

In particular, $I_n + \epsilon \epsilon' (XY - YX) \in G(\mathbb{F}[\epsilon \epsilon']/((\epsilon \epsilon')^2)) = G(D)$, so that $XY - YX \in \text{Lie } G$. \Box