## Exercises

(1) Verify that the Jacobi identity holds for $[a, b]:=a b-b a$ in the following cases:

- 2-member identity: $a(b c)=(a b) c$
- 3-member identity: $\quad a(b c)+b(c a)+c(a b)=(a b) c+(b c) a+(c a) b=0$
- 4-member identity: $a(b c)-(a b) c=b(a c)-(b a) c$
- 6-member identity: $[a, b c]+[b, c a]+[c, a b]=0$
(2) Let $s l_{n}(\mathbb{F}):=\left\{a \in g l_{n}(\mathbb{F}) \| \operatorname{tr}(a)=0\right\}$. Check that $s l_{n}(\mathbb{F})$ is a subalgebra of $g l_{n}(\mathbb{F})$ i.e. $\operatorname{tr}([a, b])=0$ for $a, b \in \operatorname{sl}_{n}(\mathbb{F})$.
(3) Let $B$ be a bilinear form on a vector space $V$. Then $o_{V, B}:=\left\{a \in g l_{V} \mid B(a(u), v)=\right.$ $-B(u, a(v))$ for $u, v \in V\}$. Show that $o_{V, B}$ is a subalgebra of the Lie algebra $g l_{V}$.
(4) Set $V=\mathbb{F}^{n}$ and $B$ the matrix of a bilinear form in the standard basis of $\mathbb{F}^{n}$. Show that $o_{V, B}=\left\{a \in g l_{n}(\mathbb{F}) \mid a^{T} B+B a=0\right\}$.
(5) Let $f: \operatorname{Mat}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be a linera function such that $f([a, b])=0$ for $a, b \in \operatorname{Mat}_{n}(\mathbb{F})$. For example, the trace function has this property. Show that in general, $f(a)=\lambda \operatorname{tr}(a)$ where $\lambda$ is independent of $a \in \operatorname{Mat}_{n}(\mathbb{F})$.

