18.745 Lecture 17 Exercises

Last updated November 8, 2010

Exercise 17.1

Let

$$V = \bigoplus_{i=1}^{4} \mathbb{R}\epsilon_i$$

$$(\epsilon_i, \epsilon_j) = \delta_{ij}$$

$$Q_{F_4} = \left\{ \sum_{i=1}^{4} a_i \epsilon_i \mid \text{all } a_i \in \mathbb{Z} \text{ or all } a_i \in \frac{1}{2} + \mathbb{Z} \right\}$$

$$\Delta_{F_4} = \left\{ \alpha \in Q_{F_4} \mid (\alpha, \alpha) = 1 \text{ or } 2 \right\}.$$

Show that (V, Δ_{F_4}) is an indecomposable root system of rank 4 with 48 roots.

Exercise 17.2

Let

$$V_{G_2} = V_{A_2}$$
$$Q_{G_2} = Q_{A_2}$$
$$\Delta_{G_2} = \{ \alpha \in Q_{A_2} \mid (\alpha, \alpha) = 2 \text{ or } 6 \}$$

Show that this is an indecomposable root system with 12 roots.

Exercise 17.3

Prove that if (V, Δ) is an indecomposable root system and $f : V \to \mathbb{R}$ is a linear map such that $f(\alpha) \neq 0$ for all $\alpha \in \Delta$, then there exists a unique highest root $\theta \in \Delta$.

Exercise 17.4

Show that the extended Cartan matrix \tilde{A} satisfies the same properties from the proposition about the Cartan matrix A, except that \tilde{A} has zero determinant. That is, show that

- (a) $a_{ii} = 2$, and all $a_{ij} \in \mathbb{Z}$,
- (b) $i \neq j \Rightarrow a_{ij} \leq 0$ and $a_{ij} = 0 \iff a_{ji} = 0$, and
- (c) if the root system Δ is indecomposable, all proper principal minors of \tilde{A} are positive.

Exercise 17.5

Compute the Dynkin diagrams of both the usual Cartan matrix and the extended Cartan matrix for C_r $(r \ge 2)$ and D_r $(r \ge 3)$.

Exercise 17.6

For each of the rank-2 root systems of type $A_1 \oplus A_1$, A_2 , $B_2(=C_2)$, and G_2 , plot the roots as points of a 2-dimensional Euclidean space.