18.745 Lecture 17 Exercises

Last updated November 8, 2010

Exercise 17.1

Let

$$
\begin{aligned}
V & =\bigoplus_{i=1}^{4} \mathbb{R} \epsilon_{i} \\
\left(\epsilon_{i}, \epsilon_{j}\right) & =\delta_{i j} \\
Q_{F_{4}} & =\left\{\sum_{i=1}^{4} a_{i} \epsilon_{i} \mid \text { all } a_{i} \in \mathbb{Z} \text { or all } a_{i} \in \frac{1}{2}+\mathbb{Z}\right\} \\
\Delta_{F_{4}} & =\left\{\alpha \in Q_{F_{4}} \mid(\alpha, \alpha)=1 \text { or } 2\right\} .
\end{aligned}
$$

Show that $\left(V, \Delta_{F_{4}}\right)$ is an indecomposable root system of rank 4 with 48 roots.

Exercise 17.2

Let

$$
\begin{aligned}
V_{G_{2}} & =V_{A_{2}} \\
Q_{G_{2}} & =Q_{A_{2}} \\
\Delta_{G_{2}} & =\left\{\alpha \in Q_{A_{2}} \mid(\alpha, \alpha)=2 \text { or } 6\right\}
\end{aligned}
$$

Show that this is an indecomposable root system with 12 roots.

Exercise 17.3

Prove that if (V, Δ) is an indecomposable root system and $f: V \rightarrow \mathbb{R}$ is a linear map such that $f(\alpha) \neq 0$ for all $\alpha \in \Delta$, then there exists a unique highest root $\theta \in \Delta$.

Exercise 17.4

Show that the extended Cartan matrix \tilde{A} satisfies the same properties from the proposition about the Cartan matrix A, except that \tilde{A} has zero determinant. That is, show that
(a) $a_{i i}=2$, and all $a_{i j} \in \mathbb{Z}$,
(b) $i \neq j \Rightarrow a_{i j} \leq 0$ and $a_{i j}=0 \Longleftrightarrow a_{j i}=0$, and
(c) if the root system Δ is indecomposable, all proper principal minors of \tilde{A} are positive.

Exercise 17.5

Compute the Dynkin diagrams of both the usual Cartan matrix and the extended Cartan matrix for $C_{r}(r \geq 2)$ and $D_{r}(r \geq 3)$.

Exercise 17.6

For each of the rank-2 root systems of type $A_{1} \oplus A_{1}, A_{2}, B_{2}\left(=C_{2}\right)$, and G_{2}, plot the roots as points of a 2-dimensional Euclidean space.

