1 Lecture 13

Given $\alpha \in \Delta$, pic a non-zero $E \in \mathfrak{g}_{\alpha}, F \in \mathfrak{g}_{-\alpha}$ st $K(E, F) = 2/K(\alpha, \alpha)$; let $H = 2d^{-1}(\alpha)/K(\alpha, \alpha)$. Then [H, E] = 2E, [H, F] = -2F, [E, F] = H. This subalgebra is isomorphic to \mathfrak{sl}_2 .

Lemma 1. (Key lemma for sl_2) Let π be a representation of sl_2 in a vector space V over \mathbb{F} of characteristic 0 and let $v \in V$ be a non-zero vector such that $\pi(E)v = 0, \pi(H)v = \lambda v$, for some $\lambda \in \mathbb{F}$. Then

- 1. $\pi(HF^n)v = (\lambda 2n)\pi(F^n)v$
- 2. $\pi(EF^n)v = n(\lambda n + 1)\pi(F^{n-1})v$
- 3. If dim $V < \infty$, then λ is a positive integer, the vectors $\pi(F)^j v$ are independent, and $\pi(F)^{\lambda+1} = 0$.

Exercise 1. Prove 2 by inducion on $n \ge 1$.

Exercise 2. If instead we used $Fv = 0, Hv = \lambda v$, then

- 1. $HE^n v = (\lambda + 2n)E^n v$
- 2. $FE^n v = -n(\lambda + n 1)E^{n-1}v$
- 3. If dim $V < \infty$, then $-\lambda$ is a positive integer, $\pi(E)^j$ are independent for $0 \le j \le -\lambda$, and $E^{-\lambda+1}v = 0$.

Exercise 3. Let $g = sl_n(\mathbb{F})$ By a previous ex, K is non-degenerate, so sl_n is semisimple. Find all possibilities for p, q for its root system Δ .