1 Lecture 13

Given $\alpha \in \Delta$, pic a non-zero $E \in \mathfrak{g}_{\alpha}, F \in \mathfrak{g}_{-\alpha}$ st $K(E, F)=2 / K(\alpha, \alpha) ;$ let $H=2 d^{-1}(\alpha) / K(\alpha, \alpha)$. Then $[H, E]=2 E,[H, F]=-2 F,[E, F]=H$. This subalgebra is isomorphic to $\mathfrak{s l}_{2}$.

Lemma 1. (Key lemma for $s l_{2}$) Let π be a representation of $s l_{2}$ in a vector space V over \mathbb{F} of characteristic 0 and let $v \in V$ be a non-zero vector such that $\pi(E) v=0, \pi(H) v=\lambda v$, for some $\lambda \in \mathbb{F}$. Then

1. $\pi\left(H F^{n}\right) v=(\lambda-2 n) \pi\left(F^{n}\right) v$
2. $\pi\left(E F^{n}\right) v=n(\lambda-n+1) \pi\left(F^{n-1}\right) v$
3. If $\operatorname{dim} V<\infty$, then λ is a positive integer, the vectors $\pi(F)^{j} v$ are independent, and $\pi(F)^{\lambda+1}=0$.

Exercise 1. Prove 2 by inducion on $n \geq 1$.
Exercise 2. If instead we used $F v=0, H v=\lambda v$, then

1. $H E^{n} v=(\lambda+2 n) E^{n} v$
2. $F E^{n} v=-n(\lambda+n-1) E^{n-1} v$
3. If $\operatorname{dim} V<\infty$, then $-\lambda$ is a positive integer, $\pi(E)^{j}$ are independent for $0 \leq j \leq-\lambda$, and $E^{-\lambda+1} v=0$.

Exercise 3. Let $g=s l_{n}(\mathbb{F})$ By a previous ex, K is non-degenerate, so $s l_{n}$ is semisimple. Find all possibilities for p, q for its root system Δ.

