Lecture 12

Structure Theory of Semisimple Lie Algebras I

Exercise 12.1: Let \mathfrak{g} denote a Lie algebra over \mathbb{F} with $char(\mathbb{F}) = 0$. Show that \mathfrak{g} is semisimple if and only if the Killing form on \mathfrak{g} is nondegenerate.

Exercise 12.2: Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$. Show that there are two distinct conjugacy classes of Cartan subalgebras given by

$$\mathfrak{h}_1 = \mathbb{R} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\mathfrak{h}_2 = \mathbb{R} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Exercise 12.3: Abstract Jordan decomposition in a Lie algebra \mathfrak{g} is unique when it exists if and only if $Z(\mathfrak{g}) = 0$.

Exercise 12.4:

- (a) Show that all derivations of the 2-dimensional nonabelian Lie algebra are inner.
- (b) Find Der (Heis₃). Note that not all derivations are inner.

Exercise 12.5: Show that Theorem 1 parts (b) and (c), and Theorem 2 part (c) hold for char(\mathbb{F}) = 0. Recall that

Theorem 1. Let \mathfrak{g} be a finite dimensional semisimple Lie algebra over \mathbb{F} with $\operatorname{char}(\mathbb{F}) = 0$ and $\overline{\mathbb{F}} = \mathbb{F}$.

- (b) All derivations of \mathfrak{g} are inner.
- (c) Any $a \in \mathfrak{g}$ admits a unique Jordan decomposition.

Theorem 2. Let \mathfrak{g} be a finite dimensional semisimple Lie algebra over \mathbb{F} with $\operatorname{char}(\mathbb{F}) = 0$ and $\overline{\mathbb{F}} = \mathbb{F}$. Let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra.

(c) \mathfrak{h} is an abelian subalgebra of \mathfrak{g} .