Scott Kovach

October 19, 2010

1 Lecture 11

1.1 The radical and semisimple Lie algebras

Exercise 1. Let \mathfrak{g} be a Lie algebra. Then

- 1. if $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$ are ideals, then $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ are ideals, and if \mathfrak{a} and \mathfrak{b} are solvable then $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ are solvable.
- 2. If \mathfrak{a} is an ideal and $b \subset \mathfrak{g}$ is a subalgebra, then $\mathfrak{a} + b$ is a subalgebra

Exercise 2. Let \mathfrak{h} and \mathfrak{r} be Lie algebras and let $\gamma : \mathfrak{h} \to \text{Der}(\mathfrak{r})$ be a Lie algebra homomorphism. Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{r}$ be the direct sum of vector spaces and extend the bracket on \mathfrak{h} and on \mathfrak{r} to the whole of \mathfrak{g} by letting

$$[h,r] = -[r,h] = \gamma(h)(r)$$

for $h \in \mathfrak{h}$ and $r \in \mathfrak{r}$. Show that this provides \mathfrak{g} with a Lie algebra structure, $\mathfrak{g} = \mathfrak{h} \ltimes \mathfrak{r}$, and that any semidirect sum of \mathfrak{h} and \mathfrak{r} is obtained in this way. Finally, show that $\mathfrak{g} = \mathfrak{h} \times \mathfrak{r}$ if and only if $\gamma = 0$.

Exercise 3. Let $\mathfrak{g} \subset gl_n(\mathbb{F})$ be a subspace consisting of matrices with arbitrary first m rows and 0 for the rest of the rows. Find $R(\mathfrak{g})$ and a Levi decomposition of \mathfrak{g} .

Exercise 4. Let V be finite-dimensional over a field \mathbb{F} which is algebraically closed and characteristic 0. Show that gl_V and sl_V are irreducible subalgebras of gl_V . Deduce that sl_V is semisimple.

Exercise 5. Let V be a finite-dimensional vector space with a symmetric bilinear form (,). Let U be a subspace such that the restriction $(,)|_{U\times U}$ is non-degenerate. Denote $U^{\perp} = \{v \in V | (v, U) = 0\}$. Then $V = U \oplus U^{\perp}$.