Scott Kovach

October 19, 2010

1 Lecture 10

Exercise 1. Suppose (a,b) is an invariant bilinear form on \mathfrak{g} . Show that if $v \in \mathfrak{g}$ is such that ad v is nilpotent, then $(e^{ad v}a, e^{ad v}b) = (a,b)$. (Hint: Consider the function $\varphi(t) = (e^{tad v}a, e^{tad v}b)$). Show that it is a polynomial in t and that $(d/dt)^k \varphi(t)|t = 0 = 0$.)

Definition 1. Let \mathfrak{g} be a Lie algebra and π be a representation of \mathfrak{g} in a finite-dimensional vector space V. The associated trace form is a bilinear form on \mathfrak{g} given by the formula $(a, b)_V = tr_V(\pi(a)\pi(b)).$

Exercise 2. Show that the trace form on $\mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{sl}_n(\mathbb{F})$ associated to the standard representation is non-degenerate provided $n \neq 2$, char $\mathbb{F} \neq 2$.

Likewise, show that the Killing forms are non-degenerate, provided char \mathbb{F} does not divide n.

Exercise 3. Consider the following 4-dimensional solvable Lie algebra $D = H_3 + \mathbb{F}d$ where $H_3 = p + q + c$ and [d, p] = p, [d, q] = -q, [d, c] = 0. Define on D the bilinear form (p, q) = 1, (c, d) = 1, the rest 0. Show that this is a non-degenerate, symmetric, invariant bilinear form, and [D, D] = p + q, so Cartan's criterion fails for this form.

Very often one can remove the assumption that \mathbb{F} is algebraically closed. Let $\mathbb{F} \supset \mathbb{F}$ be the algebraic closure of \mathbb{F} . Given a Lie algebra \mathfrak{g} over \mathbb{F} , consider $\overline{\mathfrak{g}} = \overline{\mathbb{F}} \otimes \mathfrak{g}$ over $\overline{\mathbb{F}}$. This means the following: choose a basis e_i of \mathfrak{g} over \mathbb{F} , so that $[e_i, e_j] = \sum c_{ij}^k e_k$ and let $\overline{\mathfrak{g}} = \sum_i \overline{\mathbb{F}} e_i$ with the same structure constants. Then $\overline{\mathfrak{g}}$ is again a Lie algebra, but over $\overline{\mathbb{F}}$.

Exercise 4. Prove the following

- 1. \mathfrak{g} is solvable (resp. nilpotent, abelian) if and only if $\overline{\mathfrak{g}}$ is.
- 2. Derive Cartan's criterion and the corollary for char $\mathbb{F} = 0$, but not algebraically closed.
- 3. Show that $[\mathfrak{g},\mathfrak{g}]$ is nilpotent if \mathfrak{g} is solvable if char $\mathbb{F} \neq 0$.
- 4. \mathfrak{g}_0^a is a Cartan subalgebra of \mathfrak{g} for every regular element $a \in \mathfrak{g}$, for any \mathbb{F} .